Open Access Open Access  Restricted Access Subscription or Fee Access

Guar Gum and Its Graft Copolymers: An Overview

Sandeep Rai, Nilesh Singh, Akshita Rai


Guar gum, a naturally occurring polysaccharide, is being widely used in numerous applications. Guar gum is modified by graft copolymerization to improve upon properties. Grafting is an innovative method to produce a new class of semi synthetic polymeric materials. In grafting, while the original properties of polymer remain intact, some additional and useful properties are incorporated. Natural polymers are available in huge quantities on Earth, since billions of years. Guar gum is a versatile natural polymer and is used as food and medicinal plants. In this review, an attempt is being made to bring the insights on guar gum and its graft copolymers.

Keywords: cyamopsis tetragonolobus, graft copolymers, guar gum, % grafting and grafting efficiency, polymer, polysaccharide

Full Text:



Chudzikowski R.J. Guar gum and its applications, J Soc Cosmet Chem. 1971; (22): 43–60p.

Sullad A.G., Manjeshwar L.S., Aminabhavi T.M. Novel pH-sensitive hydrogels prepared from the blends of poly (vinyl alcohol) with acrylic acid-graft-guar gum matrixes for isoniazid delivery, Ind Eng Chem Res. 2010; 49: 7323–9p.

Gupta A.P., Verma D.K. Guar gum and their derivatives: a research profile, Int J Adv Res. 2014; 2(1): 680–90p.

Sharma R., Guar gum grafting and its application in textile, Asian J Exp Sci. 2005; 19(2): 77–81p.

Warkar S.G., Gupta A.P. Int J Pharm Biol Sci. 2015; 622–38p.

Thomas T.A., Dabas B.S., Chopra D.P. Guar gum has many uses, Indian Farm. 1980; 30(9): 19–22p.

Agro gums.

Mishra G.S., Bajpai U.D.N. Prog Polym Sci. 1981; 8: 61–131p.

Bahamdan A., Dal W.H. Hydrophobic guar gum derivatives prepared by controlled grafting processes, Polym Adv Technol. 2007; 18: 652–9p.

Reddy T.T., Tammishetti S. Free radical degradation of guar gum, Polym Degrad Stab. 2004; 86: 455–9p.

Rai S., Nayak P. Eduved Int J Interdiscipl Res. 2014.

Bajpai U.D.N., Rai S. J Appl Polym Sci. 1988; 35: 1169–82p.

Kern W. Makromol Chem. 1948; 1,209,249p.

Mishra G.K., Gupta C.V. Makromol Chem. 1973; 165–205p.

Bajpai U.D.N., Jain A., Rai S. 1990; 39: 2187–240p.

Srivastava A., Mishra V., Singh P., et al. J Therm Anal Calorim. 2012; 107: 211–23p.

Bihari K., Benerjee J., Srivastava A., et al. Indian J Chem Technol. 2005; 12: 664–70p.

Trivedi J.H., Bhatt T.A., Trivedi H.C. Trends Carbohydr Res. 2011; 3(4): 35–41p.

Srivastava A., Behari K. J Appl Polym Sci. 2009; 114(3): 1426–34p.

Siva Prasad S., Madhusudhana Rao K., Rama Subhai Reddy P., et al. Indian J Adv Chem Sci. 2012; (1): 28–32p.

Patel J.J., Karve M., Patel N.K. Int J Pharm Pharm Sci. 2014; 6(8): 13–9p.

Hiremath J.N., Vishalakshi B. Int J Pharm Pharm Sci. 2014; 5(3): 82–3p.

Singh V., Singh A., Joshi S., et al. Int J Biol Macromol. 2016; 84: 442–7p.

Giri A., Bhuma T., Goswami L., et al. RSC Adv. 2015; 5: 41736–44p.

Manna P.J., Mitra T., Pramanik N., et al. Int J Biol Macromol. 2015; 75: 437–46p.

Mudgil D., Baraki S., Khatkar B.S. J Food Sci Technol. 2014; 51: 409–18p.

Sharma R., Kaith B.S., Kaha S., et al. J Environ Manage. 2015; 162: 37–45p.

Abdel-Halim E.S., Al-Deyab S.S. Int J Biol Macromol. 2014; 69: 456–63p.


  • There are currently no refbacks.