Open Access Open Access  Restricted Access Subscription or Fee Access

Functionalization of Reclaim Rubber: Possible Precursor for Polyblends in Engineering Applications

Hiren Mangukiya, Mahendra Rajput, Anjali Bishnoi, Sandeep Rai

Abstract


Improvements in mechanical and dynamic properties of a blend can be achieved by surface treatments such as grafting of functional groups on one of the blend components or activation by the application of a coating of a polymer. This paper describes the effect of grafting maleic anhydride on reclaim rubber with varying levels of maleic anhydride (i.e., 2 and 5 phr) on open two roll mills. Investigated cure characteristics and mechanical properties of grafted reclaim rubber are discussed with elaboration of the possible future scope of the precursor. Keywords: functionalization, grafted reclaim rubber, maleic anhydride, reclaim rubber, surface modification

Full Text:

PDF

References


A. Bishnoi, S. Rai, S. Kumar, V. Patel, M. Kazi, A. Limbani, J. Mistry. J Adv Sci Eng Technol. 2017; 51(Spcl Iss-3)P-I. Accepted).

M. Kaushik, A. Kumar, A. Bansal. Performance assessment of gravel-tire chips mixes as drainage layer materials using real active MSW landfill leachate, J Geotech Giologic Eng. 2015; 33: 1081–98p.

K. Bazien˙e, R. Vaiškunait˙e. Research of sustainable use of tire shreds in landfill, Sustainability. 2016; 8: 767p.

E. Oriaku, C. Agulanna, J. Odenigbo, N. Nnoruka. Waste to wealth through the incineration of waste tyres and recovery of carbon black, Int J Multidiscipl Sci Eng. 2013; 4: 7p.

I. Hita, M. Arabiourrutia, M. Olazar, J. Bilbao, J.M. Arandes, P. Castano. Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires, Renew Sustain Energy Rev. 2016; 56: 745–59p.

H. Li, X. Jiang, H. Cui, F. Wang, X. Zhang, L. Yang, C. Wang. Investigation on the co-pyrolysis of waste rubber/plastic blended with a stalk additive, J Anal Appl Pyrol. 2015; 115: 37–42p.

A. Merchant, M. Petrich. Pyrolysis of scrap tires and conversion of chars to activated carbon, AIChE J. 1993; 39(8): 1370–6p.

J. Lin, C. Chang, C. Wu. Pyrolytic treatment of rubber waste: pyrolysis kinetics of styrene-butadiene rubber, J Chem Technol Biotechnol. 1996; 66: 1, 7–14p.

I. Hussein, H. Wahhab, M. Iqbal. Influence of polymer type and structure on polymer modified asphalt concrete mix, Can J Chem Eng. 2006; 84: 4, 480–7p.

G. Miguel, G. Fowler, M. Dall'Orso, C. Sollars. Porosity and surface characteristics of activated carbons produced from waste tyre rubber, J Chem Technol Biotechnol. 2002; 77: 1, 1–8p.

D. De, D. De. Processing and material characteristics of a reclaimed ground rubber tire reinforced styrene butadiene rubber, Mater Sci Appl. 2011; 486–96p.

E. Abraham, B. Cherian, A. Elbi, L. Pothenand, S. Thomas. Recent advances in the recycling of rubber waste, In: Recent Developments in Polymer Recycling. A. Fainleib, O. Grigoryeva, Eds.; 2011, 47–100p.

T. Sreeja, S. Kutty. Styrene butadiene rubber/reclaimed rubber blends, Int J Polyrn Mater. 2003; 52: 599–609p. [14] J. Saelao, P. Phinyocheep. Influence of styrene on grafting efficiency of maleic anhydride onto natural rubber,J Appl Polym Sci. 2005; 95(1): 28–38p. [15] L. Vayachuta, P. Phinyocheep, D. Derouet, S. Pascual. Synthesis of NR-g-PMMA by “grafting from” method using ATRP process, J Appl Polym Sci. 2011; 121(1): 508–20p. [16] S. Prakanrat, P. Phinyocheep, P. Daniel. Spectroscopic investigation of polystyrene surface grafting on natural rubber, Appl Spectrosc. 2009; 63(2): 233–8p.


Refbacks

  • There are currently no refbacks.