Open Access Open Access  Restricted Access Subscription or Fee Access

A Novel Approach to Pulse Anodizing for Decreasing Energy Consumption and Increasing Productivity

Gengan Saravanan, Subramanian Mohan

Abstract


Anodizing is a resourceful method used to give aesthetic appearance and to prevent a metal from corrosion by forming an oxide layer over its surface. Depending upon the different fields of application various power supply such as direct current (DC) and pulsed current (PC) are used. This paper reviews an existing anodizing method which can be optimized with a few simple guidelines. Several current densities and pulse periods were tested to find the parameters that provide the most optimal productivity and, at the same time, the lowest energy consumption. For long enough, the pulse anodizing has been in the hands of the suppliers of rectifiers. There is not much evidence to state that pulse anodizing with slow pulses is much more effective than with fast pulses. Slow pulses mean low frequency as accounted for in the early eighties by Yokoyama et al. The anodizing industry has rejected this because a lot has been invested in new rectifiers without obtaining energy saving as expected. Additives, increasing acid concentration and temperature have been suggested as new ways to save energy. In this way, the anodizers are in the hand of the chemical suppliers and the quality of the coating is much more insecure. Keywords: anodizing, pulse periods, current densities, pulse anodizing

Full Text:

PDF

References


Keller F., Hunterand M.S., Robinson D.L. J. Electrochem. Soc. 1953; 100: 411p.

Henly V.F. Anodicoxidation of Aluminum and its Alloys. Pergamon Press, Oxford. 1982. Martin CR. Chem. Mater. 1996; 8: 1739p.

a) Su Z.X., Sha J., Pan G.W., et al. J. Phys. Chem. B. 2006; 110: 1229p.

b) Fu J., Cherevko S., Chung C.H. Electrochem. Commun. 2008; 10: 514p.

Masuda H., Fukuda K. Science. 1995; 268: 1466p.

Ono S., Saito M., Asoh H. Electrochem, Solid-State Lett. 2004; 7: B21p.

Jessensky O., Muller F., Gosele U. Appl. Phys. Lett. 1998; 72: 1173p.

Singh G.K., Golovin A.A., Aranson I.S. Phys. Rev. B. 2006; 73: 205422p.

Kanagaraj D., Vincent S., Narasimhan V.L. Bull. Electrochem. 1989; 5: 513p.

Miller M.A. U.S. Patent. 2,920,018. 1960.

Raj V., Rajaram M.P., Balasubramanian G., et al. Trans. Inst. Met Finish. 2003; 81: 114p.

Yokoyama K., Konno H., Takahashi H., et al. Plat. Surf. Finish. 1982; 69: 62p.

Lee W., Schwirn K., Steinhart M., et al. Nature Nanotech. 2008; 3: 234p.

Wernick S., Pinner R., Sheasby P.G. The Surface Treatment and Finishing of Aluminum and its Alloys. 5th Edn. Finshing Publications Ltd. Teddington, Middlesex, England. 1987.

Serebrennikova I., Vanýsek P., Birss V.I. Characterization of Porous Aluminum Oxide Films by Metal Electrodeposition. Electrochimica Acta. 1997; 42(1): 145–51p.

Bengough G.D., Stuart J.M. British Patent, 223,994. 1923.

Bengough G.D., Stuart J.M. British Patent, 223,995. 1923.

Gower C.H.R., Beren S.O. British Patent, 290,901. 1927.

Kujirai T., Ueki S. US Patent, 1,735,509. 1926.

Djozan D., Amir-Zehni M. Surf. Coat. Tech. 2003; 173: 185–91p.

Miller M.A. US Patent, 2,920,018, 1960.

The Scionics Corp. Northridge, Calif. US Patent, 3,708,407, 1970.

Permaloy Corp. Ogden, Utah. US Patent, 3,857,766. 1972.

Poll G.H. Prod. Fin. 1972; 36(6): 84–9p.

Chuo Seisakusho K.K. Jap. Patent, 51/4032. 1974.

Chuo Seisakusho K.K. Jap. Patent, 51/4034. 1974.

Kondo M., Kitagawa M., Takahashi T. Japan Kokai. 77 88,553. 1977.

Kondo M., Takahashi T. Japan Kokai, 77 88,233. 1977.

Sugiyama N., Sato T., Takahashi M., et al. Jap. Tokyo Koho. 79 14,581. 1979.

Okubo K. J. Met. Fin. Soc. Japan. 33, 219. 1982.

Chuo Seisako Ltd. Jap. Tokyo Koho JP. 82, 26, 357, 1982.

Scheineder H.G., Marx G., Krysmann W., et al. Exp. Tech. Phys. 1982; 30(2): 179p.

Kanagaraj D., Narasimhan V.L., Vincent S., et al. Bull. Electrochem. 1986; 2: 597p.

Columbini C. Trans. Inst. Met. Fin. 1988; 66: 142p.

Columbini C. Galvanotechnic. 1994; 85: 790p.

Juhl A.D., Benzon M.E., Moeller P. Proc. AESF 83rd Annual Tech. Conf. 1996; 859p.

Rasmussen J. US Patent, 6, 113, 770. 2000.

Wen Y. Diandu Yu Huanbao. 2000; 20: 30p.

Murphy J.F., Michelson C.E. Conference on Anodizing of Aluminium, ADA, Nottingham, 1961.

Kazuo I., Akio F., Kazuhiko T. Inst. Phys. Chem. Res. 1962; 38: 635p.

Murdock Inc. US Patent, 3, 418, 222. 1968.

Takahashi T., Saitoh J. Plat. Sur. Fin. 1977; 64(7): 36p.

Orlov B.P., Lel`kora L.V., Zh. Mash R. 1980; 11B: 196p.

Baba N., Mizuki I. Advanced Metal Finishing Technology in Japan. 1980; 87p.

Yokoyama K., Konno H., Takahashi H., et al. Plat. Surf. Fin. 1982; 69(7): 63p.

Mita I., Miazawa K. J. Met. Fin. Soc. Japan. 1982; 33: 165p.

Matsushita Electric Industrial Co. Ltd. US Patent, 4,671, 858. 1984.

Huang HJ. Proc. Nat. Sci. Council Republ. China, Part A, Phys. Sci. Eng. 1985; 9(1): 5p.

Mita I., Kenkyu Hokoku, Tokyo-Toritsu Kogyo Gijutsu Senta. 1988; 18: 69p. Mita I, Miyasaka H. Kuzoka Hyomen Gijutsu. 1988; 39(6): 323p.

Okubo K., Toba S., Sakura Y. J. Met. Fin. Soc. Japan. 1988; 39(9): 512p.

Okubo K., Sakura Y. J. Met. Fin. Soc. Japan. 1988; 39(11): 751p.

Okubo K., Suyama S., Sakura Hyomen Gijutsu Y. 1989; 40: 579p.

Okubo K., Suyama S., Sakura Y. J. Surf. Fin. Soc. Japan. 1989; 40: 1366p.

Azzouz N., Belmokre K., Pagetti J. Entropie. 1997; 33: 207p.

Sakairi M., Ohira Y., Takahashi H. Proc. Electrochem. Soc. 1998; 97(26): 643p.

Kanagaraj D., Vincent S., Raj V., et al. J. Electrochem. Soc. India. 1999; 48: 222p.

Kanagaraj D. Ph.D Thesis, Alagappa University, Karaikudi. 2000.

Shih H.H., Tzou S.L. Surf. Coat. Technol. 2000; 124: 278p.

Kanagaraj D., Raj V., Vincent S., et al. Bull. Electrochem. 2001; 17: 28p.

Kanagaraj D., Raj V., Vincent S., et al. Bull. Electrochem. 2001; 17: 523p.

Mohan S., Kanagaraj D., Raj V, et al. Proc. Electrochem. Soc. 2001; (4): 579

Woo Lee, Jae-CheonKim. Nanotechnology. 2010; 21: 485304(8p).

Wood G.C., O´ Sullivan J.P. The Anodizing of Aluminum in Sulphate Solutions. Electrochemica Acto. Pergamon Press. 1970; 15: 1865–76p.

Summary from a Meeting with Dr. Nagayama, Mr. Yokoyama in 1989 at The Technical University of Denmark, Institut of Product Development.

Rasmussen J. Surface Treatment with Pulse Current. PhD. Thesis, Inst. of Manufacturing Engineering, The Technical University of Denmark, Dec 1994.

Thompson G.E., Xu Y., Skeldon P., et al. Anodic Oxidation of Aluminum. Philosohical Magazinee B. 1987; 55(6): 651p.

Anderson S. Mechanism of Electrolytic Oxidation of Aluminum. J. Appl. Phys. 1944; 15: 477p.

Hoar T.P., Mott N.F. A Mechanism for the Formation of Porous Anodic Oxide Films on Aluminum. J. Phys. Chem. Solids. 1959; 9: 97p.

Takahashi H., Nagayama M., Akahori H., et al. Electron-Microscopy of Porous Anodic Oxide Films on Aluminum by Ultra-thin Sectioning Technique, Part I. J. Electron Microsc. 1973; 22(2): 149p.

Xu Y., Thompson G.E., Wood G.C. Mechanism of Anodic Film Growth on Aluminum. Trans. Inst. of Metal Finishing. 1985; 63: 98p.

Keller F., Hunter M.S., Robinson D.L. Structural Features of Oxide Coatings on Aluminum. J. Electrochem. Soc.1953; 100(9).

Yokoyama K., Konno H., Takahashi H., et al. Anodic Oxidation of Aluminum Utilizing Current Recovery Effect. AES, 2nd. International Symposium on Pulse Plating, Rosemont, I, USA. Oct 6–7, 1981.

Colombini C. The Use of Pulse Rectifiers for Aluminum Anodizing. Finishing. 1988; 12(1): 34p.

Diggle J.W., Downie T.C., Goulding CW. Anodic Oxide Films on Aluminum. Chem. Rev. 1969; 69: 365p.

Raj V., Rajaram M.P., Balasubramanian G., et al. Trans. Inst. Met Finish. 2003; 81: 114p.

Lee W., Ji R., Gosele U., et al. Nat. Mater. 2006; 5: 741p.

Schwirn K., Lee W., Hillebrand R., et al. ACS Nano. 2008; 2: 302p.

Lee W., Nielsch K., Gosele U. Nanotechnology. 2007; 18: 475713


Refbacks

  • There are currently no refbacks.