Open Access Open Access  Restricted Access Subscription or Fee Access

Recovery of Succinic acid by Reactive Extraction using Tri-n-octylamine in 1-Decanol: Equilibrium Optimization using Response Surface Method and Kinetic studies

Sumalatha Eda, T. Prathap Kumar, B. Satyavathi, P. Sudhakar, R. Parthasarathy


Reactive extraction is a promising technique for the recovery of organic acids from aqueous streams. Succinic acid, is a white, odorless solid dicarboxylic acid, and is a precursor for some specialized polyesters. Present paper presents an optimization study of reactive extraction of succinic acid equilibrium studies from aqueous solutions using Tri-n-octylamine in 1-Decanol using response surface methodology including reaction kinetics in a stirred cell. Extraction efficiency (Y), a response function was optimized using three process parameters: initial succinic acid concentration, tri-n-octylamine composition, and temperature(T). Response surface methodology in conjunction with central composite design consisting of twenty experimental runs was statically employed for the reactive extraction of succinic acid. A statistical second order polynomial quadratic model predicted an extraction efficiency of 93.75% with optimum values of parameters being: 0.2 kmol m-3 acid concentration, tri-n-octylamine composition 33 (% v/v), at 305.5 K temperature. The extraction efficiency obtained was 91% at the optimal conditions. The kinetic studies were carried out to analyze the process. Interfacial area correlation was derived based on the droplet radius. The mass transfer coefficients of succinic acid, tri-n-octylamaine, and 1:1 acid-amine complex in 1-decanol were determined using water/acetic acid/kerosene system. Based on the Hatta number, the reaction regime found to be instantaneous reaction regime occurring in the film.

Full Text:



S.M. Podkovyrov, J.G. Zeikus, J Gen Microbiol., 139, 223, (1993).

N.P. Nghiem, B.H. Davison, B.E. Suttle, G.R. Richardson, Appl.Biochem. Biotechnol., 63/65, 565, (1997).

P.C. Lee, S.Y. Lee, S.H. Hong, H.N. Chang, S.C. Park, Biotechnol. Lett., 25, 111, (2003).

A.M. Jabalquinto, F.D. González-Nilo, M. Laivenieks, M. Cabezas, J.G. Zeikus, E. Cardemil, Biochimie., 86, 47, (2004).

N.S. Samuelov, R. Datta, M.K. Jain, J.G. Zeikus, Appl. Environ. Microbiol., 65, 2260, (1999).

M.V. Guettler, D. Rumler, M.K. Jain, Int. J. Syst. Bacteriol., 49, 207, (1999).

D.H. Park, J.G. Zeikus, J. Bacteriol., 181, 2403, (1999).

P. Kim, M. Laivenieks, J. McKinlay, C. Vieille, J.G. Zeikus, Plasmid, 51, 108, (2004).

S.E. Urbance, A.L. Pometto, A.A. DiSpirito, Y. Denli, Appl. Microbiol. Biotechnol, 65, 664, (2004).

P.C. Lee, S.Y. Lee, S.H. Hong, H.N. Chang, Appl. Microbiol. Biotechnol., 58, 663, (2002).

J.M. Wardell and C.J. King, J. Chem. Eng. Data, 23, 144, (1978)

R. Wennersten, J. Chem. Tech. Biotechnol., 33(B), 85, (1983)

A. M. Baniel, and A. M. Eyal, Citric acid extraction, US 5426220 (1995).

F.A. Poposka, J. Prochazka, R. Tomovska, and A. Grizo, J. Chem. Eng. Sci., 55, 1591, (2000)

K.L. Wasewar and V.G. Pangarkar, J. Chem. Technol. Biotechnol., 77, 1068, (2002).

Y.K. Hong, and W.H. Hong, (2000) J. Bioprocess Eng., 22, 477, (2000)

P.N. Bhaurao and V.G. Pangarkar J. Sep. Sci. Technol., 40, 2539, (2005).

H. Uslu, J. Sep. Sci. Technol., 44, 1784, (2009)

K.L. Wasewar, A. Keshav, Intern. J. Chem. Reactor Eng, 7Article A3, (2009).

E. Mustafa, M.T. Gurkan, and L.K. Doraiswamy, J. Ind. Eng. Chem. Res., 50, 13518, (2011)

K.N. Prasanna Rani, T. Prathap Kumar, J.S.N. Murthy, T. Sankarshana, and B.Vishwanadham, J. Sep. Sci. Technol., 45, 654, (2010).

G.T. Jeong, D.H. Park, Appl. Biochem. Biotechnol., 156, 431, (2009).

E. Ryantin, M.B. Mohd. B.A. Rahman, A.B. Salleh, RNZA. Rahman, Enzyme Microbiol. Technol., 37, 739, (2005)

S. Demirkol, H.A. Aksoy, M. Tuter, G. Ustum, D.A. Sasmaz, J Am Oil Chem Soc., 83, 929, (2006).

U. Rashid, F. Anwar, T.M. Ansari, M. Arif, M. Ahmad, J. Chem Technol. Biotechnol., 84, 1364, (2009).

C. Kütahyali, B. Çetinkaya, M.B.Acar, N.O. Işık , I. Cireli, Journal of Hazardous Materials, 201/202, 115, (2012).

B. Jaouachi, M.B. Hassen, F. Sakli, Strength Autex Research Journal, 7(3), 159, (2007).

K.Y. Benyounis, A.G.Olabi, M.S.J. Hashmi, Journal of Materials Processing Technology, 164/165, 978, (2005).

C.M. Starks, Tetrahedron, 55, 6261, (1999).

Kailas L. Wasewar, International Journal of Chemical Engineering and Applications, 3(4), 249, (2012).

K.V. Kumar, S. Sivanesan, Journal of Hazardous Materials, B 123, 288, (2005)

T. Prathap kumar, B. Vishwanadham, K.N. Prasanna Rani, M. Mallikarjun, V.V. Basava Rao, Che. Engg.Com., 198, 572, (2011).

I. Komasawa, T. Otake, and A.Yamada, J. Chem. Eng. Jpn., 13, 209, (1980)

A. Kiani, R. Bhave, and K. K. Sirkar, J. Membr. Sci., 20, 125, (1984).

R. S. Juang, and R. H. Lo, Ind. Eng. Chem. Res., 33, 1001, (1994).

V. G. Levich, NJ., 60, (1962)

R. Prasad, R. Kiani, R. R. Bhave and K. K. Srikar, J. Membr. Sci., 26, 79, (1986).

R. S. Juang and W. T. Huang, J. Chem. Eng. Jpn., 28(3), 274, (1995).

H. S. Jun, Y. S. Huh, W. H. Hong, Y. K. Hong, J. Biotechnol. Prog., 21, 1673, (2005).

R.C. Reid, J.M. Prausnitz, and B.E. Poling, The properties of gases and liquids. 4th ed., Mc Graw-Hill, New York, , pp.52, 598, (1987).

Eda. Sumalatha, R. parthasarathy, T.Prathap Kumar, Research Gate, 1 (2015).

C.J. Hanna and R.D. Nobel, Chem. Rev., 85, 583, (1985).

O. Levenspiel, Chemical Reaction Engineering, 3rd ed., John Wiley, Singapore, p. 534, (2001).

L.K. Doraiswamy and M.M. Sharma, Heterogeneous Reaction: Analysis, Examples and Reactor Design, vol. 2, Fluid-Fluid-Solid-Reactions, John Wiley, New York, pp. 17, (1984).


  • There are currently no refbacks.