Open Access Open Access  Restricted Access Subscription or Fee Access

Significance of the Malondialdehyde (MDA) Bioassay Methods in Lipid Peroxidation

Phule Ankush Ratnamala, Vitthalrao Bhimasha Khyade

Abstract


Along with all the metabolic reactions, the cell cytoplasm is engaged in the process of production of the free radicals and reactive oxygen species (ROS). The overproduction of reactive oxygen species in cell cytoplasm leads into the condition of the oxidative stress.  This situation may also be the results of the combination of excessive formation of radicals derived from oxygen or nitrogen or both. Cellular components may be attacked in such conditions. The lipids are the most susceptible for such type of attack through peroxidation. The process of lipid peroxidation is a chain of chemical reactions involving free radicals. The lipid peroxidation leads into the deterioration of the lipids of polyunsaturated category. The biological membranes are the targets for damage through the oxidative deterioration of lipids of polyunsaturated category. The deterioration through free radicals can be assayed through dienes of conjugated category; malondialdehyde (MDA); 4-hydroxynonenal and the others. The malondialdehyde (MDA) is the major product for assessment of lipid peroxidation. The chemical reaction of malondialdehyde (MDA) with thiobarbituric acid is the most common method of assay of lipid peroxidation. Thec product of this chemical reaction is easy for quantification through the use of spectrophotometry and the selective HPLC-based assays. The present attempt is to focus on the important aspects of the determination of malondialdehyde (MDA) and its significance in pathological conditions.

Key words: Oxidative Stress; Malonaldehyde (MDA); Assay Methods


Full Text:

PDF

References


Gillham, B.; Papachristodoulou, D. K.; Thomas, J. H.; Will’s: Biochemical basis of medicine, 3rd ed., Butterworth- Heinemann: Oxford, 1997.

Urso, M .L.; Clarkson, P. M.; Toxicology 2003, 189, 41.

Halliwell, B.; Br. Med. J. 1993, 307, 885.

Halliwell, B.; Chirico, S.; Am. J. Clin. Nutri. 1993, 57, 715.

Kesavulu, M. M.; Rao, B. K.; Giri, R.; Vijaya, J.; Subramanyam, G.; Apparao, C.; Diabetes Res. Clin. Pract. 2001, 53, 33.

Seto, H.; Akiyama, K.; Okuda, T.; Hashimoto, T.; Takesue, T.; Ikemura, T.; Chem. Lett. 1981, 52, 707.

Esterbauer, H.; Cheeseman, K. H.; Methods Enzymol. 1990, 186, 407.

Ostrea, Enrique M.; Cepeda, Eugene E.; Fleury, Cheryl A.; Balun, James E. (1985). "Red Cell Membrane Lipid Peroxidation and Hemolysis Secondary to Phototherapy". Acta Paediatrica. 74 (3): 378–381. doi:10.1111/j.1651-2227.1985.tb10987.x

Michael M. Gaschler and Brent R. Stockwell (2017). Lipid peroxidation in cell death.Biochemical and Biophysical Research Communications 482 (2017): 419-425.

Levine, R.L., Williams, J.A., Stadtman, E.R. and Shacter, E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233: 346-357. doi:10.1016/S0076-6879(94)33040-9.

Bird, R. P.; Hung, S. S. O.; Hadley, M.; Draper, H. H.; Anal. Biochem. 1983, 128, 240.

Ichinose, T.; Miller, M. G.; Shibamoto, T.; Lipids 1989, 24, 895.

Rosenblum, E. R.; Gavaler, J. S.; Van Thiel, D. H.; Free Radical Biol. Med. 1989, 7, 569.

Dahle, L. K.; Hill, E. G.; Holman, R. T.; Arch. Biochem. Biophys. 1962, 98, 253.

Tarladgis, B. G.; Watts, B. M.; J. Am. Oil Chem. Soc. 1960, 37, 403.

Sinnhuber, R. O.; Yu, T. C.; J. Jpn. Oil Chem. Soc. 1977, 26, 259.

Alessio, H. M. In Handbook of Oxidants and Antioxidants in Exercise; Hanninen, O.; Packer, L.; Sen, C. K., eds.; Elsevier: Amsterdam, 2000.

Bird, R. P.; Draper, H. H.; Methods Enzymol. 1984, 105, 299.

Shaw, C. A.; Taylor, E. L.; Megson, I. L.; Rossi, A. G.; Mem. Inst. Os¬waldo Cruz 2005, 100, 67.

Joosten, E.; Clin. Chem. Lab. Med. 2001, 39, 717.

Singer, B.; Kusmierek, J. T.; Annu. Rev. Biochem. 1982, 51, 655.

Cirak, B.; Inci, S.; Palaoglu, S.; Bertan, V.; Clin. Chim. Acta 2003, 327, 103.

Wolff, S. P.; Dean, R. T.; Biochem. J. 1987, 245, 243.

Scott, B.; Deman, A.; Peeters, P.; Van den Branden, C.; Stolear, J. C.; Van Camp, G.; Verbrrlen, D.; Nephrol. Dial. Transplant. 2003, 18, 737.

Coyle, J. T.; Puttfarcken, P.; Science 1993, 262, 689.

Marchasson, I. B.; Beauvieux, M. C. D.; Peuchant, E.; Harston, S. R.; Decamps, A.; Reignier, B.; Emeriau, J. P.; Rainfray, M.; Age Ageing 2001, 30, 235.

Corongiu, A. , L. Chiappetti, F. Haardt, A. Treves, M. Colpi, and T.Belloni (1986). The X-ray spectrum of the black hole candidate GX339-4 in a low state Astronomy & Astrophysics manuscript no. H4479. https://arxiv.org/pdf/astro-ph/0306400.pdf

Draper, M. D., Pasche, J. S., & Gudmestad, N. C. (2002). Factors influencing PVY development and disease expression in three potato cultivars. American Journal of Potato Research, 79(3), 155–165.

Wong SHY, Knight JA, Hopfer SM, Zaharia O, Leach CN Jr, Sunderman FW Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of m alondialdehydethiobarbituric acid adduct. Clin Chem 1987;33: 214-20.

Slatter DA, Bolton CH, Bailey AJ. (2003). The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia 2003;43(5):550-7.

Tamura, H., Kitta, K. & Shibamoto, T. (1991) Formation of reactive aldehydes from fatty acids in a Fe2+/H2O2 oxidation system. J. Agric. Food Chem., 39, 439-442 Charlson ME, Pompei P, Ales KL. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis; 40(5):373-383.

Nielsen F, Mikkelsen BB, Niesen JB, Andersen HR, Grandjean P. (1997). Plasma malondialdehyde as biomarker for oxidative stress: reference interval and efforts of life-style factors. Clin Chem 43(7):1209-1214.

Karatas, F., Karatepe, M. and Baysar, A. (2002) Determination of Free Malondialdehyde in Human Serum by High-Performance Liquid Chromatography. Analytical Biochemistry, 311, 76-79.

Pilz J., Meineke I., Gleiter H.C., 2000. Measurement of free and bound malondialdehyde in plasma by high-performance liquid chro¬matography as the 2,4-dinitrophenylhydrazine derivative. J. Chromatogr. B 742, 315–325

Grotto D, Santa Maria LD, Boeira S, Valentini J, Charão MF, Moro AM, Nascimento PC, Pomblum VJ, Garcia SC. (2007). Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J Pharm Biomed Anal. 2007; 43:619–624.

Yagi Kunio, Hiroshi Ohkawa and Nobuko Ohishi (1968). Assay for lipid peroxides in animal tissues by thiobarbituric acid reactionAnalytical Biochemistry Volume 95, Issue 2: 351-358. https://www.sciencedirect.com/science/article/pii/0003269779907383

Raharjo Sir, John N. Sofos and Glenn R. Schmidt (1992). Improved speed, specificity, and limit of determination of an aqueous acid extraction thiobarbituric acid-C18 method for measuring lipid peroxidation in beefJournal of Agricultural and Food Chemistry 40(11) DOI: 10.1021/jf00023a027.

Fukunaga, K.; Takama, K.; Suzuki, T. (1995). Anal. Biochem. 1995, 230, 20. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422009000100032.

Templar, S. Bernon, M., Mingwei, F. (1999), “Supply Chain Costing – A Road Map”, Proceedings of Logistics Research Network Conference, Dublin, pp. 510-516.

Almandós, M. E., Giannini, D. H., Ciarlo, A. S., Boeri, R. L. (1986). Formaldehyde as an interference of the 2-thiobarbituric acid test. J. Sci. Food Agrio. 37, 54-58.

Goncalves, C. A. ; Rodrigues Filho, J. A. ; Camarao, A. P. ; Azevedo, G. P. C. de, 2005. Evaluation of Panicum maximum cv. Tobiata pasture to milk production of under two levels of concentrate supplementation in the Northeast of the State of Para. Documentos - Embrapa Amazonia Oriental (39): 35 pp. 2005.

Tomita K, van Bokhoven A, van Leenders GJLH, Ruijer ETG, Jansen CFJ, Bussemakers MJG, Schalken JA (1990) Cadherin switching in human prostate cancer progression. Cancer Res 60: 3650–3654.




DOI: https://doi.org/10.37628/jcep.v5i2.866

Refbacks

  • There are currently no refbacks.