Open Access Open Access  Restricted Access Subscription or Fee Access

STUDY OF MECHANICAL PROPERTIES OF CARBON NANOTUBES BASED NANO COMPOSITES

E. N. Ganesh

Abstract


Since their perception in 1991 by Ijima, carbon nanotubes have been the focal point of impressive research. The broad fundamental investigations performed by physicists and scientific experts in the handling of carbon nanotubes amid the previous decade have set up a sound establishment for investigating their mechanical application. The outstanding mechanical properties of carbon nanotubes can be abused in the advancement of nanotube-based composite materials that may far surpass the properties of existing fiber-fortified composites. Nanocomposites of carbon tubes that have unprecedented explicit firmness and explicit quality speak to gigantic open door for application in the 21st century. This paper gives a concise survey of the ongoing headway in carbon nanotubes and their composites. We inspect the examination work detailed in the writing on the structure and handling of carbon nanotubes, just as the portrayal and displaying of the properties of carbon nanotubes and their composites.

KEYWORDS: Nanocomposites, Carbon Nanotubes, Polymer Composites

Full Text:

PDF

References


Ijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, 1991. 354: 56.

Chou, T.-W., Microstructural Design of Fiber Composites, Cambridge University Press, Cambridge, UK 1992.

Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W, Cassell, A. M. and Dai, H, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, 1999 283: 512.

Wong, S. S., Joselevich, E., Woolley, A. T.; Cheung, C. L. and Lieber, C. M., “Covalently Functionalized Nanotubes as Nanometre- Sized Probes in Chemistry and Biology,” Nature,1998. 394: 6688.

Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C.-L. and Lieber, C. M., “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing,” Science, 2000. 289: 94.

Yao, Z., Postma, H. W. C., Balents, L. and Dekker, C., “Carbon Nanotube Intramolecular Junctions,” Nature, 1999. 402: 273.

Yokobson, B. I., Brabec, C. J. and Bernholc, J., “Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Range,” Phys. Rev. Lett., 1996. 76: 2511.

Yakobson, B. I. and Samsonidze, G., “Atomistic theory of mechanical relaxation in fullerene nanotubes,” Carbon, 2000. 38: 1675.

Nardelli, M. B., Yakobson, B. I. and Bernholc, J., “Brittle and Ductile Behavior in Carbon Nanotubes,” Phys. Rev. Lett., 1998. 81: 4656.

Ren, Z. F. et al. unpublished work

Journet, C., Maser, W. K., Bernier, P., Loiseau, A., de la Chapelle, M. L., Lefrant, S.,.Deniard, P., Lee, R. and Fischer, J. E., “Large-Scale Production of Single-Walled Carbon Nanotubes by the Electric-Arc Technique,” Nature, 1997 388: 756.

Rinzler, A. G., Liu, J., Dai, H., Nikolaev, P., Huffman, C. B., Rodriguez-Macias, F. J. Boul, P. J., Lu, A. H,. Heymann, D., Colbert, D. T., Lee, R. S., Fischer, J. E., Rao, A. M., Eklund P. C. and Smalley, R. E., “Large-Scale Purification of Single-Wall Carbon Nanotubes: Process, Product and Characterization,” Applied Physics A, 1998. 67: 29.

Nikolaev, P., Bronikowski, M. J., Bradley, R. K., Fohmund, F., Colbert, D. T., Smith, K. A., and Smalley, R. E., “Gas-Phase Catalytic Growth of Single-Walled Carbon Nanotubes from Carbon Monoxide,” Chemical Physics Letters, 1999. 313: 91.

Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, D. Z., Wen, J. G., Wang, J. H., Calvet, L., Chen, J., Klemic, J. F. and Reed, M. A., “Growth of a Single Freestanding Multiwall Carbon Nanotube on Each Nanonickel Dot,” Applied. Physics Letters, 1999. 75, 1086.

Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal M. P., and Provencio, P. N., “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Science, 1998. 282, 1105.

Huang, Z. P., Xu, J. W., Ren, Z. F., Wang, J. H., Siegal, M. P. and Provencio, P. N., 1998, “Growth of Large-Scale Well-Aligned Carbon Nanotubes by Plasma Enhanced Hot Filament Chemical Vapor Deposition,” Applied Physics Letters 1998 73, 3845.

Bower, C. Zhu, W. Jin, S. and Zhou, O., “Plasma-Induced Alignment of Carbon Nanotubes” Applied Physics Letters, 2000. 77: 830.

Treacy, M. M., Ebbesen, T. W. and Gibson, T. M., “Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes,” Nature, 1996. 381: 687.

Wong, E. W., Sheehan, P. E. and Lieber, C. M., “Nanobeam Mechanics: Elasticity,

Strength, and Toughness of Nanorods and Nanotubes,” Science, 1997. 277: 1971.

Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., Kulik, A. J., Stöckli, T., Burnham, N., A., and Forró, L. “Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes,” Physical Review Letters. 1999. 82: 944.

Shaffer M. S. P. and Windle, A. H., “Fabrication and Characterization of Carbon Nanotube/Poly (vinyl alcohol) Composites,” Advanced Materials, 1999. 11: 937.

Wagner, H. D., Lourie, O., Feldman Y. and Tenne, R., “Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix,” Applied Physics Letters, 1998. 72: 188.

Cooper, C. A., Young, R. J. and Halsall, M., “Investigation into the Deformation of Carbon Nanotubes and Their Composites Through the Use of Raman Spectroscopy,” Composites Part A: Applied Science and Manufacturing, 2001. 32: 401.

Ajayan, P. M., Schadler, L. S., Giannaris, C. and Rubio, A., “Single-Walled Nanotube-Polymer Composites: Strength and Weaknesses,” Advanced Materials, 2000. 12: 750.

Overney, G., Zhong W., and Tomanek, D., “Structural Rigidity and Low Frequency Vibrational Modes of Long Carbon Tubules,” Zeitschrift Fur Physik D, 1993, 27: 93.

Govindjee S. and Sackman, J. L., “On The Use of Continuum Mechanics to Estimate the Properties of Nanotubes,” Solid State Communications, 1999. 110: 227.

Lu, J. P., “Elastic Properties of Single and Multilayered Nanotubes ,” J. Phys. Chem. Solids, 1997. 58: 1649.


Refbacks

  • There are currently no refbacks.