Open Access Open Access  Restricted Access Subscription or Fee Access

Sustainable Development: The Current Indian Scenario

S. V. A. R. Sastry, Ch. V. R. Murthy

Abstract


India has emerged as one of the most promising countries for the development of a biotechnology business pole because it is a mega biodiverse country containing more than two million different species of animals, plants and microorganisms. One of the biggest drawbacks of this country is the laws that govern innovation: intellectual property law and provisional measures of access to genetic resources do not encourage innovation in this sector. The evaluation system of universities is also a factor that delays innovation because the number of scientific articles is more important than the development of new services, products and processes. Moreover, the country features a wide variety of skilled PhD researchers. These researchers are highly capable of adapting, researching and innovating in an environment with limited financial resources. The national biotechnology strategy has emerged in an atmosphere of contradictions, with several financial and governmental incentives and limitations on the dual education - business environment and laws. The Indian biotechnology scenario is discussed in this article by aggregating national realities and difficulties for the strengthening of one of the globally emerging technologies.

Full Text:

PDF

References


Lemoigne M. Produits de déshydratation et de polymérisation de l’acide -oxybutyrique, Bull Soc Chim Biol. 1926; 8: 770–82p.

Anderson A.J., Dawes E.A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates, Microbiol Rev. 1990; 54: 450–72p. PMID: 2087222.

Zhao K., Tian G., Zheng Z., et al. Production of D-(–)-3-hydroxyalkanoic acid by recombinant Escherichia coli, FEMS Microbiol Lett. 2003; 218: 59–64p. Doi: 10.1111/j.1574-6968.2003.tb11498.x.

Chen G.Q., Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials, Biomaterials. 2005; 26: 6565–78p. Doi:10.1016/j.biomaterials.2005.04.036.

Schroeder E.D., Eweis J.B. (Eds.). Bioremediation Principles. McGraw-Hill; 1998, 296p. ISBN: 0-07-115719-0.

Chesbrough H.M. Open Innovation: A New Imperative for Creating and Profiting from Technology. HBS Pub. Corp.; 2006, 272p. ISBN 1-4221-0283-1.

Zaldivar J., Nielsen J., Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration, Appl Microbiol Biotechnol. 2001; 56: 17–34p. Doi: 10.1007/s002530100624.

Senthilkumar V., Gunasekaran P. Bioethanol production from cellulosic substrates: Engineered bacteria and process integration challenges, J Sci Ind Res. 2005; 64: 845–53p.

Ferro A.F., Bonacelli M.B., Assad A.L. Uso da biodiversidade e acesso a recursos genéticos no Brasil: atual regulamentação dificulta pesquisa e desenvolvimento, Inov Uniemp. 2006; 2: 16–7p.

Peralta-Yahya P.P., Keasling J.D. Advanced biofuel production in microbes, Biotechnol J. 2010; 5: 147–62p. Doi: 10.1002/biot.200900220.

Patent WO2008045555 (2007), invs.: Renninger N.S., Mcphee D.J. Fuel compositions including farnesane and farnesene derivatives and methods of making and using same.

Patent WO2008130492 (2008), invs.: Renninger N.S., Ryder J.A., Fisher K.J. Jetfuel compositions and methods of making and using same.

Coelho S.T., Kravosac A.C.B., Martins O.S., et al. 2002.

Ramos P., Kucek K.T., Domingos A.K., et al. Biodiesel. Biotecnol. 2003; 31: 28–37p.

Mallick K. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review, Biometals. 2002; 15: 377–90p. Doi: 10.1023/A:1020238520948.

Demirbas A. Current technologies for the thermo-conversion of biomass into fuels and chemicals, En Sour. 2004; 26: 715–30p. Doi 10.1080/00908310490445562.

Kumar A., Ergas S., Yuan X., et al. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, Trends Biotech. 2010; 28: 371–80p. Doi: 10.1016/j.tibtech.2010.04.004.

Rude M.A., Schirmer A. New microbial fuels: a biotech perspective, Curr Opin Microbiol. 2009; 12: 274–81p. Doi: 10.1016/j.mib.2009.04.004.

Van Haandel A.C. Influence of the digested cod concentration on the alkalinity requirement in anaerobic digesters, Water Sci Technol. 1994; 30: 23–34p.

Yuan Y., Chen Q., Zhou S., et al. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell, J Hazard Mater. 2011; 187: 591–5p. Doi: 10.1016/j.jhazmat.2011.01.042.

Qian F., He Z., Thelen M.P., et al. A microfluidic microbial fuel cell fabricated by soft lithography, Biores Technol. 2011; 102: 5836–40p. Doi: 10.1016/j.biortech.2011.02.095.

Strik D.P.B.T.B., Timmers R.A., Helder M., et al. Microbial solar cells: applying photosynthetic and electrochemically active organisms, Trends Biotechnol. 2011; 29: 41–9p. Doi: 10.1016/j.tibtech.2010.10.001.

Velasquez-Orta S.B., Curtis T.P., Logan B.E. Energy from algae using microbial fuel cells, Biotechnol Bioeng. 2009; 1: 1068–76p. Doi: 10.1002/bit.22346.

Cheng S., Logan B.E. Sustainable and efficient biohydrogen production via electrohydrogenesis, Proc Natl Acad Sci. 2007; 104: 18871–3p. Doi: 10.1073/pnas.0706379104.

Wagner R.C., Regan J.M., Oh S.E., et al. Hydrogen and methane production from swine wastewater using microbial electrolysis cells, Water Res. 2009; 43: 1480–8p. Doi: 10.1016/j.watres.2008.12.037.

Cao X., Huang X., Liang P., et al. A new method for water desalination using microbial desalination cells, Environ Sci Technol. 2009; 43: 7148–52p. Doi:10.1021/es901950j.

He Z., Minteer D.S., Angenent L.T. Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environ Sci Technol. 2005; 39: 5262–7p. Doi: 10.1021/es0502876.

Chang I.S., Moon H., Jang J.K., et al. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors, Biosens Bioelectron. 2005; 20: 1856–9p. Doi:10.1016/j.bios.2004.06.003.




DOI: https://doi.org/10.37628/jrec.v2i1.110

Refbacks

  • There are currently no refbacks.