Open Access Open Access  Restricted Access Subscription or Fee Access

Review on Production of Activated Carbon from Agricultural Biomass Waste

Riajul Islam Sardar, Shamim Hasan, Bushra Saba, Md. Mahmud

Abstract


Agricultural biomass waste is one of the main residue largely generated in the environment and was used as precursor for the synthesis of activated carbon as adsorbents, support on catalyst, electric charge storage, micro pore structure, high adsorption capacity material. Recently, many research paper can be found on particular biomass feedstock and activation technique to produce activated carbon. Consequently, main focus should be taken to the relevance those precursor effectiveness and final properties of structure of carbon. The effects of various thermal treatment stage activation methods on characteristics and activating conditions are physical, chemical and microwave and most significant method that have wider acceptability is microwave activation technique is described and summarized of application, characteristics, specific capacitance, adsorption capacity, conventional activation method and different agricultural source for the production of low cost activated carbon. From the current publication it is clear that agricultural bio waste produced activated carbon situated effective ability for removing of many contaminants. Finally, the major obstacles and future expectations of activated carbon preparation from agricultural waste are investigated.


Full Text:

PDF

References


A. M. Abioye, F. N. Ani. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews. 2015; 52: 1282–1293. doi: 10.1016/j.rser.2015.07.129

Delgado, L.F., Charles, P., Glucina, K., et.al. The removal of endocrine disrupting compounds pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon—a review. Sci. Total Environ. 2012; 435-436: 509-525.

Sevilla, M., Mokaya, R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 2014; 7(4): 1250-1280.

Shafeeyan, M.S., Daud, W.M.A.W., Houshmand, A. A review on surface modification of activated carbon for carbon dioxide adsorption. J. AnaL. App. Pyrol. 2010; 89(2): 143-151.

Chen, Y., Zhu, Y.C., Wang, Z.C., et.al. Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review. Adv. Colloid Interface Sci. 2011; 163(1): 39-52

Yahya, M.A., Al-Qodah, Z., Ngah, C.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew. Sust. Energ. Rev. 2015; 46: 218-235.

Xiao-Fei Tan, Shao-Bo Liu, Yun-Guo Liu ,et al. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresource Technology. 2017; 227: 359–372. doi: 10.1016/j.biortech.2016.12.083

H. Marsh and F. Rodríguez-Reinoso. CHAPTER 2 - Activated Carbon (Origins) in Activated Carbon. Oxford: Elsevier Science Ltd; 2006. pp. 13-86.

N. M. Ahmed, F. A. Sabah, E. A. Kabaa, et.al. Single- and double-thread activated carbon fibers for pH sensing. Materials Chemistry and Physics. 2019; 221: 288-294. doi: https://doi.org/10.1016/j.matchemphys.2018.09.059.

C. Long, P. Liu, Y. Li, et.al. Characterization of Hydrophobic Hyper crosslinked Polymer as an Adsorbent for Removal of Chlorinated Volatile Organic Compounds. Environmental Science & Technology. 2011; 45(10): 4506-4512. doi: 10.1021/es104250j.

P. Sullivan, J. Moate, B. Stone, et.al. Physical and chemical properties of PAN-derived electrospun activated carbon nanofibers and their potential for use as an adsorbent for toxic industrial chemicals. Adsorption. 2012; 18(3): 265-274. doi: 10.1007/s10450-012-9399-x.

J. Y. Chen. 1 - Introduction in Activated Carbon Fiber and Textiles. Oxford: Woodhead Publishing. 2017. pp. 3-20.

T. J. Mays. CHAPTER 3 - Active Carbon Fibers in Carbon Materials for Advanced Technologies. T. D. Burchell Ed. Oxford: Elsevier Science Ltd; 1999. pp. 95-118.

T. Lee, C.-H. Ooi, R. Othman, et.al. Activated carbon fiber-the hybrid of carbon fiber and activated carbon. Rev. Adv. Mater. Sci. 2012; 36(2): 118-136.

R. Asakura, M. Morita, K. Maruyama, et.al. Preparation of fibrous activated carbons from wood fiber. Journal of Materials Science. 2004; 39(1): 201-206. doi: 10.1023/B:JMSC.0000007745.62879.74.

A. L. Ahmad, M. M. Loh, J. A. Aziz. Preparation and characterization of activated carbon from oil palm wood and its evaluation on Methylene blue adsorption. Dyes and Pigments. 2007; 75(2): 263-272. doi: https://doi.org/10.1016/j.dyepig.2006.05.034.

G. Chattopadhyaya, D. G. Macdonald, N. N. Bakhshi, et.al. Preparation and characterization of chars and activated carbons from Saskatchewan lignite. Fuel Processing Technology. 2006; 87(11): 997-1006. doi: https://doi.org/10.1016/j.fuproc.2006.07.004.

C. Toles, S. Rimmer, J. C. Hower. Production of activated carbons from a washington lignite using phosphoric acid activation. Carbon. 1996; 34(11): 1419-1426. doi: https://doi.org/10.1016/S0008-6223(96)00093-0.

W. M. Daud, W. S. Ali. Comparison on pore development of activated carbon produced from palm shell and coconut shell (in eng). Bioresour Technol. 2004; 93(1): 63-69. doi: 10.1016/j.biortech.2003.09.015.

J. Donald, Y. Ohtsuka, C. Xu. Effects of activation agents and intrinsic minerals on pore development in activated carbons derived from a Canadian peat. Materials Letters. 2011; 65(4): 744-747. doi: https://doi.org/10.1016/j.matlet.2010.11.049.

C. Okutucu, G. Duman, S. Ucar, et.al. Production of fungicidal oil and activated carbon from pistachio shell. Journal of Analytical and Applied Pyrolysis. 2011; 91(1): 140-146. doi: https://doi.org/10.1016/j.jaap.2011.02.002.

K. Le Van, T. T. Luong Thi. Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Progress in Natural Science: Materials International. 2014; 24(3): 191-198. doi: 10.1016/j.pnsc.2014.05.012.

I. A. W. Tan, A. L. Ahmad, B. H. Hameed. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials. 2008; 154(1): 337-346. doi: https://doi.org/10.1016/j.jhazmat.2007.10.031.

W. Li, K. Yang, J. Peng, et.al. Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Industrial Crops and Products. 2008; 28(2): 190-198. doi: https://doi.org/10.1016/j.indcrop.2008.02.012.

D. Mohan, A. Sarswat, V. K. Singh, et.al. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chemical Engineering Journal. 2011; 172(2):1111-1125. doi: https://doi.org/10.1016/j.cej.2011.06.054.

J. K. Ratan, M. Kaur, B. Adiraju. Synthesis of activated carbon from agricultural waste using a simple method: Characterization, parametric and isotherms study. Materials Today: Proceedings. 2018; 5(2): 3334-3345. doi:https://doi.org/10.1016/j.matpr.2017.11.576.

S. Hashemian, K. Salari, Z. A. Yazdi. Preparation of activated carbon from agricultural wastes (almond shell and orange peel) for adsorption of 2-pic from aqueous solution. Journal of Industrial and Engineering Chemistry. 2014; 20(4): 1892-1900. doi: https://doi.org/10.1016/j.jiec.2013.09.009.

M. Soleimani, T. Kaghazchi. Agricultural Waste Conversion to Activated Carbon by Chemical Activation with Phosphoric Acid. Chemical Engineering & Technology. 2007; 30(5): 649-654. doi: 10.1002/ceat.200600325.

T. Mochizuki, M. Kubota, H. Matsuda, et.al. Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation. Fuel Processing Technology. 2016; 144:164-169. doi: https://doi.org/10.1016/j.fuproc.2015.12.012.

R. V. Ramanujan, S. Purushotham, M. H. Chia. Processing and characterization of activated carbon coated magnetic particles for biomedical applications. Materials Science and Engineering: C. 2007; 27(4): 659-664. doi: https://doi.org/10.1016/j.msec.2006.06.007.

J. de Celis, N. E. Amadeo, A. L. Cukierman. In situ modification of activated carbons developed from a native invasive wood on removal of trace toxic metals from wastewater. J Hazard Mater. 2009; 161(1): 217-223. doi:10.1016/j.jhazmat.2008.03.075.

J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, et.al. Activated carbon modifications to enhance its water treatment applications. An overview. Journal of Hazardous Materials. 2011; 187(1): 1-23. doi:https://doi.org/10.1016/j.jhazmat.2011.01.033.

L. A. Jonas, J. A. Rehrmann. The rate of gas adsorption by activated carbon. Carbon. 1974; 12(2): 95-101. doi: https://doi.org/10.1016/0008-6223(74)90017-7.

J. Wang, S. Kaskel. KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry. 2012; 22(45): 23710-23725. doi:10.1039/C2JM34066F.

G. Mezohegyi, F. P. van der Zee, J. Font, et.al. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. Journal of Environmental Management. 2012; 102: 148-164. doi: https://doi.org/10.1016/j.jenvman.2012.02.021.

J. F. Kwiatkowski. Activated Carbon: Classifications, Properties and Applications. New York, NY, USA: Nova Science Publishers; 2012. pp 555.

M. M. Tang, R. Bacon. Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon. 1964; 2(3): 211-220. doi: https://doi.org/10.1016/0008-6223(64)90035-1.

T.-H. Ko, P. chiranairadul, C.-K. Lu, et.al. The effects of activation by carbon dioxide on the mechanical properties and structure of PAN-based activated carbon fibers. Carbon. 1992; 30(4): 647-655. doi: https://doi.org/10.1016/0008-6223(92)90184-X.

Meng, A., Yang, Z., Li, Z., et.al. Nanochain architectures constructed by hydrangea-like MoS 2 nano fl owers and SiC nanowires: synthesis, mechanism and the enhanced electrochemical and wide-temperature properties as an additive-free negative electrode for supercapacitors. J. Alloy. Comp. 2018; 746: 93e101. https://doi.org/10.1016/j.jallcom.2018.02.280

Wang, J., Liu, H., Sun, H., et.al. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and longcycle life supercapacitors. Carbon. 2018; 127:, 85-92. https://doi.org/10.1016/j. carbon.2017.10.084.

Wang, K., Zhao, N., Lei, S., et.al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim. Acta. 2015; 166:1-11. https://doi. org/10.1016/j.electacta.2015.03.048.

Du, J., Liu, L., Hu, Z., et.al. Order mesoporous carbon spheres with precise tunable large pore size by encapsulated self-activation strategy. Advanced Functional Materials. 2018; 28(33): 1802332. https://doi.org/10.1002/adfm.201802332

Rashidi, N.A., Yusup, S. A review on recent technological advancement in the activated carbon production from oil palm wastes. Chem. Eng. J. 2017; 314: 277-290. https://doi.org/10.1016/j.cej.2016.11.059

Jaria, G., Calisto, V., Silva, et.al. Obtaining granular activated carbon from paper mill sludge challenge for application in the removal of pharmaceuticals from wastewater. Sci. Total Environ. 2019; 653: 393-400. https://doi.org/10.1016/j.scitotenv.2018.10.346.

Zeng, L., Lou, X., Zhang, J., et.al. Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode. Surf. Coating. Technol. 2007; 107:2411-2502. https://doi.org/10.1016/j.surfcoat.2018.10. 041

Nasri, N., Zain, H., Usman, H., et.al. CO2 adsorption-breakthrough study on activated carbon derived from renewable oil palm empty fruit bunch. Aust. J. Basic Appl. Sci. 2015; 9: 67-71.

Tao, J., Huo, P., Fu, Z., et.al. Characterization and phenol adsorption performance of activated carbon prepared from tea residue by NaOH activation. Environ. Technol. 2019; 40(2): 171-181. https://doi.org/10.1080/09593330. 2017.1384069

R. Saidur, E.A. Abdelaziz, A. Demirbas, et.al. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011; 15(5): 2262–2289. https://doi.org/10.1016/j.rser.2011.02.015.

R. Biswas, H. Uellendahl, B.K. Ahring. Wet explosion: a universal and efficient pretreatment process for lignocellulosic biorefineries. BioEnergy Res. 2015;8: 1101–1116, https://doi.org/10.1007/s12155-015-9590-5

M.-A. Arsène, K. Bilba, H. Savastano Junior, et.al. Treatments of non-wood plant fibres used as reinforcement in composite materials, Mater. Res. 2013; 16(4): 903–923, https://doi.org/10.1590/S1516-14392013005000084.

R. Kumar, G. Mago, V. Balan, et.al. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies, Bioresour. Technol. 100 (2009) 3948–3962, https://doi.org/10.1016/J. BIORTECH.2009.01.075.

W.M.A.W. Daud, W.S.W. Ali. Comparison on pore development of activated carbon produced from palm shell and coconut shell, Bioresour. Technol. 2004; 93(1): 63–69. https://doi.org/10.1016/J.BIORTECH.2003.09.015.

R. Zanzi, K. Sjöström, E. Björnbom. Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy. 2002; 23(5): 357–366. https://doi.org/10.1016/ S0961-9534(02)00061-2.

E. Chauvet. Changes in the chemical composition of alder, poplar and willow leaves during decomposition in a river. Hydrobiologia. 1987; 148: 35–44. https:// doi.org/10.1007/BF00018164.


Refbacks

  • There are currently no refbacks.