Open Access Open Access  Restricted Access Subscription or Fee Access

Ionic liquids: as a solvent for electrodeposition of metals and energy conversions

Gengan Saravanan, T. R. Heera

Abstract


Over the past decade, Ionic Liquids have attracted much interest for their use as non-aqueous electrolytes in electrochemical applications. In this context, their conductivity as well as their electrochemical stability are the most important physical properties. Together with other interesting properties such as their negligible vapor pressure and their non-flammability, they appear to be ideal electrolytes for many interesting applications such as electrodeposition of metals with maximum current efficiency (CE) because of no H2 evolution. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal electrodeposition, and as batteries and fuel cells where conventional media, organic solvents in batteries and supercapacitors.

Keywords: electrochemical applications, electrodeposition, ionic liquids

Full Text:

PDF

References


. K. R. Seddon, “Ionic Liquids for Clean Technology,” J. Chem. Technol. Biotechnol. 1997, 68, 351.

M. Schlesinger and M. Paunovic, Modern Electroplating (4th edition), (editors),

Wiley, New York, 2000

G. Bird, “Observations on the Electro-Chemical Influence of Long-Continued Electric

Currents of Low Tension”, Phil. Trans. 127, pp.37-45, 1837

Junot de Bussey, Electrodeposition of Metals from. Ionic Liquids, Fr. Pat. 3564 (1848). 29.

F. Endres, A. P. Abbott and D. MacFarlane, Eds., Electrodeposition of Metals from

Ionic Liquids, Wiley VCH, Weinheim, 2007.

P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis Wiley-VCH Verlag,

Weinheim, Germany 2003.

E. Peled and E. Gileadi, “The Electrodeposition of Aluminum from Aromatic Hydrocarbon,”

J. Electrochem. Soc. Vol 123 pp 15, 1976.

L. Simanavicius, Chemija, vol 3, pp 3, 1990.

K. Izutsu, Electrochemistry in Non-aqueous Solutions, Wiley VCH, Weinheim, 2002

W.H.Kruesi and D.J.Fray Met.Trans.B,. vol 24B pp 605, 1993.

D. J. Fray and G. Z. Chen, “Reduction of titanium and other metal oxides using

electrodeoxidation”, Mater. Sci. Technol. vol.20, No.3, pp. 295-300, 2004.

F. Lantelme, H. Alexopoulos, M. Chemla and O. Haas, Electrochim. Acta 33 (1988)

F. H. Hurley and T. P. Wier, “Electrodeposition of Metals from Fused Quaternary

Ammonium Salts”, J. Electrochem. Soc. Vol.98, No.5,pp 203-206, 1951.

F. H. Hurley and T. P. Wier, “The Electrodeposition of Aluminum from Nonaqueous

Solutions at Room Temperature”,J. Electrochem. Soc., vol.98 No.5, 207-212, 1951.

J. S. Wilkes, J. A. Lewinsky, R. A. Wilson and C. L. Hussey, “Dialkylimidazolium

chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry,

spectroscopy and synthesis”, Inorg. Chem. Vol.21, No.3, 1263-1264, 1982.

J. S. Wilkes and M. J. Zaworotko, “Air and water stable 1-ethyl-3-methylimidazolium based

ionic liquids”,Chem. Commun. Vol.0,No.13, pp.965-967, 1992.

B. M. Quinn, Z. Ding, R. Moulton and A. J. Bard, “Novel Electrochemical Studies of Ionic

Liquids”, Langmuir vol.18No.5, pp. 1734-1742, 2002.

R. P. Swatloski, J. D. Holbrey and R. D. Rogers,” Ionic liquids are not always green:

hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate”, Green Chem. Vol.5,

No.4,pp. 361-363, 2003.

P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel,

“Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts”, Inorg. Chem.

Vol.35, No.5,pp.1168-1178, 1996.

M. J. Earle and K. R. Seddon, “Ionic liquids. Green solvents for the future”, Pure Appl. Chem., Vol. 72, No. 7, pp. 1391-1398, 2000.

T. Welton, “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis”,Chem. Rev. vol.99 , No.8, pp 2071–2084, 1999.

K. Seddon, “Ionic liquids: A taste of the future”,Nat. Mater. vol.2 pp.363-365, 2003.

N. Gathergood, P. J. Scammells and M. T. Garcia, “Biodegradable ionic liquids

Part III. The first readily biodegradable ionic liquids”, Green Chem. vol.8, No.2, pp.156-160

Z. Du, Z. Li, S. Guo, J. Zhang, L. Zhu and Y. Deng, “Size-controllable synthesis of

monodispersed SnO2 nanoparticles and application in electrocatalysts”, J. Phys. Chem. B. J

Phys Chem B. vol.109(18):8774-8778, 2005

K. Fukumoto, M. Yoshizawa and H. Ohno, “Room Temperature Ionic Liquids from 20

Natural Amino Acids”, J. Am. Chem. Soc. vol.127, No.8, pp.2398-2399, 2005

A. P. Abbott, G. Capper, D. L. Davies, R. Rasheed and V. Tambyrajah, “Novel solvent

properties of choline chloride/urea mixtures”,Chem. Commun, vol.7.No.1, pp.70-71, 2003.

U. Schroder, J. D. Wadhawan, R. G. Compton, F. Marken, P. A. Z. Suarez and C. S.

Consorti, R. F. De Souza, J. Dupont, “Water-induced accelerated ion diffusion: voltammetric

studies in 1-methyl-3-[2, 6-(S)-dimethylocten-2-yl] imidazolium tetrafluoroborate, 1-butyl-3-

methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids”, New J. Chem.

vol.24, No.12, 1009-1015, 2000.

D. R. MacFarlane, P. Meakin, J. Sun, N. Amini and M. Forsyth, “Pyrrolidinium Imides: A

New Family of Molten Salts and Conductive Plastic Crystal Phases”, J. Phys. Chem. B

vol.103, No.20, pp 4164-4170, 1999.

J. Robinson and R. A. Osteryoung, “The Electrochemical Behavior of Aluminum in the Low

Temperature Molten Salt System n Butyl Pyridinium Chloride: Aluminum Chloride and

Mixtures of This Molten Salt with Benzene”, J. Electrochem. Soc. vol.127, No.1,122-128,

Y. NuLi, J. Yang, J. Wang, J. Xu and P. Wang, “Electrochemical Magnesium Deposition

and Dissolution with High Efficiency in Ionic Liquid”, Electrochem. Solid-State Lett. vol.8,

No.11, C166-C169, 2005.

W. Freyland, C. A. Zell, S. Z. El Abedin and F. Endres, “Nanoscale electrodeposition of

metals and semiconductors from ionic liquids”, Electrochim. Acta, vol. 48, No.20-22, pp.

-3061, 2003

N. Borisenko, S. Z. El Abedin and F. Endres, “In Situ STM Investigation of Gold

Reconstruction and of Silicon Electrodeposition on Au(111) in the Room Temperature Ionic

Liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide”, J. Phys. Chem. B

vol. 110, No. 12, pp. 6250–6256, 2006.

F. Endres, “Ionic Liquids: Solvents for the Electrodeposition of Metals and Semiconductors”,

Chem. Phys. Chem vol.3 No.2,pp.144-154, 2002.

P. Chen and I. Sun, "Electrodeposition of cobalt and zinc-cobalt alloys from a lewis acidic

zinc chloride-1-ethyl-3 methylimidazolium chloride molten salt", ELECTR

ACT, vol.46,No.8 , pp. 1169- 1177, 2001.

A. P. Abbott, G. Capper, D. L. Davies, H. Munro, R. Rasheed and V. Tambyrajah,

Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary

ammonium salts with functional side chains”, Chem.Commun, vol.7, No.19, pp.2010-2011,

J, Z. Yang, Y. Jin, W. G. Xu, Q, G. Zhang and S. L. Zang, “Studies on mixture of ionic

liquid EMIGaCl4 and EMIC”,Fluid Phase Equil. vol.227, No.1, 41-46, 2005.

A. P. Abbott, G. Capper, D. L. Davies and R. Rasheed,” Ionic liquid analogues formed from hydrated metal salts”, Chem. Eur. J. vol.10, No.15, pp.3769-742, 2004

A. P. Abbott, G. Capper, D. L. Davies, R. Rasheed and V. Tambyrajah, “Novel solvent properties of choline chloride/urea mixtures”,Chem. Commun, vol.7, No.1, pp.70-71, 2003.

A. P. Abbott, D. Boothby, G. Capper, D. L. Davies and R. Rasheed “Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids”,J. Am. Chem. Soc.,vol.126,No.29, pp.9142-9147, 2004.

A. P. Abbott, G. Capper, D. L. Davies, H. Munro and R. Rasheed, “Ionic Liquids Based upon Metal Halide/Substituted Quaternary Ammonium Salt Mixtures”, Inorg. Chem. vol.43, No.11, pp 3447–3452, 2004.

R. C. Harris, PhD Thesis, University of Leicester, 2009.

Lin YF and Sun IW, “Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt”, Electrochim Acta, vol. 44, No.16, pp. 2771–2777, 1999

P. C. Trulove and R. A. Mantz, “In Ionic Liquids in Synthesis”, ed. P. Wasserscheid and T. Welton, Wiley-VCH, Weinheim, pp. 103–126, 2003.

S. Carda-Broch, A. Berthod and D. W. Armstrong, “Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid,”Anal. Bioanal. Chem, vol. 375, pp. 191, 2003.

K. R. Seddon, A. Stark and M. J. Torres, “Influence of chloride, water, and organic solvents on the physical properties of ionic liquids,” Pure Appl. Chem, vol 72, pp.2275. 2000.

P. Bonhoˆ te, A. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Gratzel, “Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts,” Inorg. Chem, vol 35, pp. 1168, 1996.

D. R. MacFarlane, P. Meakin, J. Sun, N. Amini and M. Forsyth, “Pyrrolidinium Imides: “A New Family of Molten Salts and Conductive Plastic Crystal Phases,” J. Phys. Chem. B, vol 103, pp. 4164,1999.

K. N. Marsh, J. A. Boxall and R. Lichtenthaler, “Room temperature ionic liquids and their mixtures—a review,”Fluid Phase Equilib, vol 219,pp. 93, 2004.

P. Wasserscheid and W. Keim, “Ionic Liquids—New Solutions for Transition Metal Catalysis,” Angew. Chem. Int. Ed, vol 39, pp. 3772, 2000.

U. Shroder, J. D. Wadhawan, R. G. Compton, F. Marken, P. A. Z. Suarez, C. S. Consorti, R. F. de Souza and J. Dupont, “Structural change of ionic association in ionic liquid/water mixtures: A high-pressure infrared spectroscopic study,” New J. Chem., vol 24, pp1009, 2000.

A.P. Abbott, G. Capper, DL.Davies, and R.K. Rasheed, “Ionic liquid analogues formed from hydrated metal salts,” Chem. Eur. J, vol 10, pp. 3769, 2004

G. Saravanan, S. Mohan, “Electrodeposition of Fe-Ni-Cr alloy from Deep Eutectic System containing Choline chloride and Ethylene Glycol’’, Int. J. Electrochem. Sci., vol 6, pp. 1468-1478, 2011.

G. Saravanan and S. Mohan, “Structure Composition and Corrosion Resistance Studies of Co–Cr Alloy Electrodeposited From Deep Eutectic Solvent (DES),” J. Alloys and Compounds. Vol 522, pp. 162-166, 2012.

Lin, Y.-F. and Sun, I-W,”Electrodeposition of zinc from a Lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt,” Electrochim. Acta, vol 44, pp. 2771,1999

P.-Y Chen, M.-C Lin, and I-W. Sun, “Electrodeposition of Cu‐Zn Alloy from a Lewis Acidic ZnCl2‐EMIC Molten Salt,” J. Electrochem. Soc., vol 147, pp. 3350, 2000.

P.-Y Chen, and I-W Sun, ”Electrodeposition of cobalt and zinc-cobalt alloys from a lewis acidic zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt,”Electrochim. Acta, vol 46, pp. 1169, 2001.

K.Murase, K Nitta, T Hirato, and Y. Awakura., “Electrochemical behaviour of copper in trimethyl-n-hexylammonium bis((trifluoromethyl)sulfonyl)amide, an ammonium imide-type room temperature molten salt,”J. Appl. Electrochem., vol 31, pp.1089,2001.

G. Saravanan and S. Mohan “Nucleation of copper on mild steel in copper chloride (CuCl2·2H2O)-1-ethyl-3-methylimidazolium chloride [EMIM]Cl – ethylene glycol (EG) ionic liquid” New Journal of Chemistry,vol 37, pp. 2564-2567, 2013.

R.H. Bube, and K.W. Mitchell, “Research opportunities in polycrystalline compound solar cells,”J.Electron. Mater., vol 22, pp. 17.1993.

K.T. Iwaiand Kojima, (1982) Prog. Batteries Sol. Cells, 4, 491.

P.-Y. Chen, and I.-W. Sun, ”Electrochemistry of Cd(II) in the basic 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate room temperature molten salt,” Electrochim. Acta, vol 45,pp 3163,2000.

X-H. Xu, and C.L. Hussey,”Electrodeposition of Silver on Metallic and Nonmetallic Electrodes from the Acidic Aluminum Chloride‐1‐Methyl‐3‐Ethylimidazolium Chloride Molten Salt,” J.Electrochem. Soc., vol 139, pp.1295, 1992.

F. Endres, and W. Freyland,” Electrochemical Scanning Tunneling Microscopy Investigation of HOPG and Silver Electrodeposition on HOPG from the Acid Room-Temperature Molten Salt Aluminum Chloride−1-Methyl-3-butyl-imidazolium Chloride,” J. Phys. Chem. B, vol 102, 10229, 1998.

C.A. Zell, F.Endres, and W. Freyland, “Electrochemical insitu STM study of phase formation during Ag and Al electrodeposition on Au(111) from a room temperature molten salt,”

Phys. Chem. Chem. Phys., vol1, pp 697, 1999.

Y.Katayama, S. Dan, T. Miura, and T. Kishi,” Electrochemical behavior of silver in 1-ethyl-3-methylimidazolium tetrafluoroborate molten salt,”

J. Electrochem. Soc., vol 148, ppC102, 2001.

P. He, H.T. Liu, Z.Y.Li, Y. Liu, X.D. Xu, and J.H.Li, “Electrochemical deposition of silver in room-temperature ionic liquids and its surface-enhanced Raman scattering effect,”Langmuir, vol 20, pp 10260, 2004.

GA. Somorjai, “Introduction to Surface Chemistry and Catalysis,” John Wiley & Sons, Inc., New York, 1994.

C.-C.Tai, F.-Y.Su,, and I.-W. Sun,” Electrodeposition of palladium -silver in a Lewis basic 1-ethyl-3-methylimidazolium chloride- tetrafluoroborate ionic liquid,” Electrochim. Acta, 50, 5504, 2005.

F.-Y. Su, J.-F. Huang, and I.-W. Sun,. Galvanostatic Deposition of alladium-Gold Alloys in a Lewis Basic EMI Cl BF4 Ionic Liquid”, J. Electrochem. Soc., vol 151, pp C811, 2004

Hsiu, S.-I., Tai, C.-C., and Sun, I.-W. Electrodeposition of palladium-indium from 1-ethyl-3-methylimidazolium chloride tetrafluoroborate ionic liquid”, Electrochim. Acta, vol 51, pp 2607, 2006

P.He, H.Liu, Z. Li, and, J. Li, “Electrodeposition of Platinum in Room-Temperature Ionic Liquids and Electrocatalytic Effect on Electro-oxidation of Methanol

J.Electrochem. Soc., vol 152, pp E146, 2005.

M.-H Yang, M.-C Yang, and I.-W Sun, “Electrodeposition of indium antimonide from the water-stable 1-ethyl-3-methylimidazolium chloride/tetrafluoroborate io nic liquid J. Electrochem. Soc., vol 150, pp C544, 2003.

Y NuLi, J.Yang, and P.Wang, “Electrodeposition of magnesium film from BMIMBF4 ionic liquid, Appl. Surf. Sci., vol 252, pp 8086, 2006.

P.Wang, Y. NuLi, J. Yang, and Z.Feng, “Mixed ionic liquids as electrolyte for reversible deposition and dissolution of magnesium,” Surf. Coat. Technol., vol 201, pp 3783, 2006.

Z Feng, Y.NuLi, J Wang, and J. Yang, “Study of Key Factors Influencing Electrochemical Reversibility of Magnesium Deposition and Dissolution”, J. Electrochem. Soc., vol 135, pp C689, 2006.

Y, NuLi, J. Yang, and R. Wu,. “Reversible deposition and dissolution of magnesium from BMIMBF4 ionic liquid,”Electrochem. Commun., vol 7, pp 1105, 2005.

I. Mukhopadhyay, C.L. Aravinda, D.Borissov, and W. Freyland, “Electrodeposition of Ti from TiCl4 in the ionic liquid l-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature: study on phase formation by in situ electrochemical scanning tunneling microscopy”, Electrochim. Acta, vol 50, pp 1275, 2005.

A.R. Brukin, “Production of Aluminum and Alumina, Critical Reports in Applied Chemistry”, , John Wiley & Sons, Ltd., Chichester. Vol. 20, 1987.

Y.Zhao, and T.J. VanderNoot, “Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts,”

Electrochim. Acta, vol 42, pp 3,1997.

T.Tsuda, C.L. Hussey, and G.R. Stafford, “Electrochemistry of Titanium and the Electrodeposition of Al-Ti Alloys in the Lewis Acidic Aluminum Chloride–1-Ethyl-3-methylimidazolium Chloride Melt,” J. Electrochem. Soc., vol 151, pp C379, 2004.

G.R. Stafford, “The Electrodeposition of an Aluminum‐Manganese Metallic Glass from Molten Salts,” J. Electrochem. Soc., vol 136, pp 635, 1989.

F.Endres, M. Bukowski, R. Hempelmann, and H. Natter, “Electrodeposition of nanocrystalline metals and alloys from ionic liquids,”

Angew. Chem. Int. Ed. Engl. vol 42, pp 3428, 2003.

Q.X. Liu, S. Zein El Abedin, and F.Endres, “Electroplating of mild steel by aluminium in a first generation ionic liquid: A green alternative to commercial Al-plating in organic solvents,”

Surf. Coat. Technol., vol 201,pp 1352, 2006.

T Jiang, M.J Chollier, G. Dube, A. Lasia, and G.M. Brisard, “Electrodeposition of aluminium from ionic liquids: Part I—electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)–1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids,” Surf. Coat. Technol, vol 201, pp 1, 2006.

S. Zein El Abedin, E.M. Moustafa, R. Hempelmann, H. Natter, F. Endres, “Additive free electrodeposition of nanocrystalline aluminium in a water and air stable ionic liquid,” Electrochem. Commun, vol 7, PP 1111, 2005

, M. Smiglak, J. M. Pringle, X. Lu, L. Han, S. Zhang, H. Gao, D. R. MacFarlane and R. D. Rogers, “Ionic liquids for energy, materials, and medicine”, Chem. Commun., vol.50, No. 66, pp9228–9250, 2014.

Douglas R. MacFarlane, Naoki Tachikawa, Maria Forsyth, Jennifer M. Pringle, Patrick C. Howlett, Gloria D. Elliott, James H. Davis, Jr., Masayoshi Watanabe, Patrice Simon and C. Austen Angell,” Energy applications of ionic liquids”, Energy Environ. Sci. vol.7, No.1 pp.232–250, 2014.

H.Ohno, Electrochemical Aspects of Ionic Liquids 2nd edn (Wiley, 2011).

M. Díaz, M, A.Ortiz and I Ortiz, I. “Progress in the use of ionic liquids as electrolyte membranes in fuel cells”, J. Membrane Sci. Vol.469, No. pp.379–396, 2014.

M.S. Miran, T. Yasuda, M.A. Susan, K. Dokko and M Watanabe, “Binary protic ionic liquid mixtures as a proton conductor: high fuel cell reaction activity and facile proton transport”, J. Phys. Chem. C, 118, pp.27631–27639, 2014.

T.Yasuda, and M. Watanabe, “Protic ionic liquids: fuel cell applications”, MRS Bull. Vol.38, No.7, pp 560–566, 2013.

Ye, Y. S. Rick, J. Hwang, “Ionic liquid polymer electrolytes”, J. Mater. Chem., vol. 1, No.8, pp.2719–2743, 2013.

Jiangshui Luo, Annemette H. Jensen, Neil R. Brooks, Jeroen Sniekers, Martin Knipper, David Aili, Qingfeng Li, Bram Vanroy, Michael Wübbenhorst, Feng Yan, Luc Van Meervelt, Zhigang Shao, Jianhua Fang, Zheng-Hong Luo, Dirk E. De Vos, Koen Binnemans and Jan Fransaer, ” 1,2,4 Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells”, Energy Environ. Sci. vol.8, No.4, pp.1276–1291 2015.

Hernández-Fernández, F. J. et al.” Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment”, Fuel Process. Technol. vol.138, pp284–297 (2015).

F.J.Hernández-Fernández, A.Pérez de los Río, .J.I.Moreno, F.Tomás-Alonso,” New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment”. Chem. Eng. J.,vol. 279, No.1, pp.115–119, 2015.

Kyoko Fujita, Douglas R. MacFarlane, Maria Forsyth, Masahiro Yoshizawa-Fujita, Kenichi Murata, Nobuhumi Nakamura, and Hiroyuki Ohno, “ Solubility and stability of cytochrome c in hydrated ionic liquids: effect of oxo acid residues and kosmotropicity” , Biomacromolecules, vol. 8, No.7, pp.2080–2086, 2007.

K.Fujita, Y.Nikawa, and Ohno, H. “Cold crystallisation behaviour of water molecules in ionic liquids as a screening method to evaluate biocompatibility of the hydrated ionic liquids” Chem. Commun., vol. 49, No.31, pp.3257–3259, 2013.

K.Fujita, K.Murata, M. Masuda, N.Nakamura, and H. Ohno, “Ionic liquids designed for advanced applications in bioelectrochemistry”. RSC Adv.,vol. 2, No.10, pp 4018–4030, 2012.

Hiroyuki Ohno, Kyoko Fujita and Yuki Kohno. “Is seven the minimum number of water molecules per ion pair for assured biological activity in ionic liquid–water mixtures?”, Phys. Chem. Chem. Phys. Vol.17, No.22, pp.14454–14460, 2015.

K.Tamura, N.Nakamura and H. Ohno, “Cytochrome c dissolved in 1 allyl 3 methylimidazolium chloride type ionic liquid undergoes a quasi-reversible redox reaction up to 140 °C”, Biotechnol. Bioeng. Vol.109, No.3, pp.729–735 , 2012.

Kyoko Fujita, Nobuhumi Nakamura, Kiyohiko Igarashi, Masahiro Samejima and Hiroyuki Ohno, “Biocatalytic oxidation of cellobiose in an hydrated ionic liquid”, Green Chem. vol. 11,No.3,pp. 351–354, 2009.

J. R. D Rogers and K. R. Seddon, “Ionic Liquids: Industrial Application to Green Chemistry”(ACS Symposium Series 818), American Chemical Society, Washington, USA (2002). Chiappe C., Pieraccini D. , J. Phys. Org. Chem., 18, 275 (2005).

Castiglione F., Raos G., Appetecchi G.B., Montanino M., Passerini S.Moreno M., Formulari A., Mele A., “Blending ionic liquids: how physico-chemical properties change”, Chem. Chem. Phys., 12, No.8, pp.1784-1792, 2010.

M.Montanino , G.B.Appetecchi,Q.Zhouand W.A.Henderson “Physical and electrochemical properties of binary ionic liquid mixtures: (1 − x) PYR14TFSI–(x) PYR14IM14”, Electrochim. Acta, vol.60, No.15, pp.163-169, 2012.

Qian Zhou, Wesley A. Henderson, Giovanni B. Appetecchi and Stefano Passerini,“Phase Behavior and Thermal Properties of Ternary Ionic Liquid−Lithium Salt (IL−IL−LiX) Electrolytes”, J. Phys. Chem. C, vol.114, No.13 pp.6201-6204, 2010.

Ryan K. M., Olive M., de Meatza I , GREENLION Project: Advanced Manufacturing Processes for Low Cost Greener Li-Ion Batteries in Electric Vehicle Batteries: Moving from Research toward Innovation, Book ID 329226,Springer International Publishing Switzerland (2014).

Appetecchi G. B., Carewska M., Montanino M., Moreno M., Mele A., Castiglione F., Meille S. V., Raos G., Famulari A. , Green and Safe Electrolytes Based on Ionic Liquids in Advanced Manufacturing Processes For Low Cost Greener Li-Ion Batteries - The White Paper of The GREENLION Project, Chapter II, Retrieved fromhttp://www.greenlionproject.eu (2016).

Elie Paillard, Qian Zhou, Wesley A. Henderson, Giovanni B. Appetecchi ,Maria Montanino and Stefano Passerini “Electrochemical and Physicochemical Properties of PY14FSI -Based Electrolytes with LiFSI”, J. Electrochem. Soc., Vol.156, No.11, A891-895, 2009.

G.T.Kim, G.Appetecchi M. Montanino M.,F. Alessandrini and S. Passerini “Long-Term Cyclability of Lithium Metal Electrodes in Ionic Liquid-Based Electrolytes at Room Temperature”, ECS Trans., vol.25, No.38, pp.127-136, 2010.

A.Basile ,A.I Bhatt, A.P O'Mullane, Nature communications, vol.7, No.11794, 2016.

M. Holzapfel, C. Jost, P. Novák, Stable cycling of graphite in an ionic liquid based electrolyte”,Chem. Commun., Vol.21, No.18, pp.2098-2099, 2004.

S. Ferrari, E. Quartarone, C. Tomasi, D. Ravelli, S. Protti, M. Fagnoni, P. Mustarelli, J. Power Sources ,235, 142-147, 2013.

Y. An, P. Zuo, C. Du, Y. Ma, X. Cheng, J. Lin, G. Yin, R. Soc. Chem. 2012, 2, 4097-4102; B. Garcia, S. Lavallée, G. Perron, C. Michot, M. Armand, Electrochim. Acta 2004, 49, 4583-4588; A. Swiderska-Mocek, Electrochim. Acta 2014, 132, 504-511; M. Wang, Z. Shan, J. Tian, K. Yang, X. Liu, H. Liu, K. Zhu, Electrochim. Acta 2013, 95, 301-307.

S. Best, A. I. Bhatt, A. F. Hollenkamp, J. Electrochem. Soc. 2010, 157, A903-A911; D. Bresser, E. Paillard, S. Passerini, J. Electrochem. Sci. Technol. 2014, 5, 37-44.

S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, N. Terada, “Lithium Secondary Batteries Using Modified-Imidazolium Room-Temperature Ionic Liquid”, J. Phys. Chem. B Lett. 110, No.21, pp.10228-10230, 2006.

C. J. Allen, J. Hwang, R. Kautz, S. Mukerjee, E. J. Plichta, M. A. Hendrickson, K. M. Abraham, “Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li–Air Batteries”, J. Phys. Chem. C, vol.116, pp. 20755-20764, 2012.

Balducci A, Bardi U, Caporali S, Mastragostino M and Soavi F 2004 “Ionic liquids for hybrid supercapacitors”, Electrochem. Commun. Vol.6, No.6, 566–570, 2004.

E. Tee, I. Tallo, T.Thomberg, A. Ja¨nes, E. Lust , J Electrochem Soc vol.163, No. 7, pp. A1317-325, 2016.

Alexei A. Kornyshev, “Double-Layer in Ionic Liquids: Paradigm Change?” J Phys Chem B Vol.111No.20, pp. 5545-5557, 2007.

C. Merlet , B.Rotenberg , PA.Madden and M Salanne “Computer simulations of ionic liquids at electrochemical interfaces”, Phys Chem Chem Phys, vol.15, No.38, pp.15781-15792 2013.

E. Coadou , P.Goodrich, AR.Neale, L.Timperman, C. Hardacre, J. Jacquemin and M. Anouti , “Synthesis and Thermophysical Properties of Ether‐Functionalized Sulfonium Ionic Liquids as Potential Electrolytes for Electrochemical Applications” ChemPhysChem, vol. 17, No.23, pp.3992-4002, 2016.

J.H Lee, J.B Ryu, A.S Lee, W.Na , H.S. Yoon, W.J Kim and C.M Koo, “High-voltage ionic liquid electrolytes based on ether functionalized pyrrolidinium for electric double-layer capacitors”, Electrochim Acta, vol. 222, No 20, pp.1847-1852, 2016.

H.Niedermeyer, J.P.Hallett , I.J. Villar-Garcia, P.A. Hunt PA and T.Welton,” Mixtures of ionic liquids”, Chem Soc Rev, vol.41, No.23,pp. 7780-7802, 2012.

M.T. Clough, C.R. Crick, J. Gräsvik, P.A. Hunt, H. Niedermeyer, T. Welton, O.P. Whitaker “A physicochemical investigation of ionic liquid mixtures”,Chem. Sci., Vol.148,No.6, pp. 1101-1114, 2015

Krause, A. Balducci “High voltage electrochemical double layer capacitor containing mixtures of ionic liquids and organic carbonate as electrolytes”, Electrochem Commun, vol. 13, No.8, pp 814 -817, 2011

S. Pohlmann, T. Olyschlager, P.Goodrich, J.A.Vicente, J. Jacquemin and A. Balducci “Azepanium-based ionic liquids as green electrolytes for high voltage supercapacitors”, Electrochim Acta vol.153, No. pp.426-432, 2015

Eléonore Mourad, Laura Coustan, Pierre Lannelongue, Dodzi Zigah, Ahmad Mehdi, André Vioux, Stefan A. Freunberger, Frédéric Favier and Olivier Fontaine, “Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors”, Nature Materials vol.16, No.4, pp.446–453, 2017.

Anouti M, Couadou E, Timperman L, and Galiano H. “Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material”, Electrochimica Acta. vol. 64, pp.110–117, 2012.

Brandt A, Pires J, M.Anouti and A.Balducci,”An investigation about the cycling stability of supercapacitors containing protic ionic liquids as electrolyte components”, Electro‐ chimica Acta. 108, 226– 231, 2013.




DOI: https://doi.org/10.37628/jrec.v3i2.456

Refbacks

  • There are currently no refbacks.