Open Access Open Access  Restricted Access Subscription or Fee Access

The decomposition of tris-(oxalato)-manganate (III) complex ion as the reaction suitable for the laboratory practice on chemical kinetics

Pavel Anatolyevich Nikolaychuk, Mariya Mikhaylovna Vayner

Abstract


The complex ion [Mn(C2O4)3]3- is very photosensitive and rapidly decomposes at the daylight even at ambient temperatures. Although the mechanism of this reaction is complicated, its kinetic equation obeys the pseudo-first order. In addition, the tris-(oxalate)-manganate ion has a low thermal stability, and the reaction of its decomposition is highly affected by temperature. This makes this reaction very suitable for demonstrating the laws of chemical kinetics to the students – both the first-order reaction kinetics and the dependency of the rate constant on temperature. The kinetic studies of this reaction using a photocolourimetric method were performed; the influence of the initial concentrations of the reagents and temperature on the rate was studied. The didactic implementation of the reaction was discussed. The methodical instruction for the organization of the laboratory practice is provided.

Keywords: activation energy, Arrhenius equation, chemical kinetics, decomposition, first order reaction

Full Text:

PDF

References


Cartledge G. H., Ericks W. P. Oxalato Complex Compounds of Tervalent Manganese. Journal of the American Chemical Society, 1936; 58(10): 2061 – 2065.

Krishnamurty K. V., Harris G. M. The Chemistry of the Metal Oxalato Complexes. Chemical Reviews, 1961; 61(3): 213 – 246.

Davies G. Some aspects of the chemistry of manganese(III) in aqueous solution. Coordination Chemistry Reviews, 1969; 4(2): 199 – 224.

Yamaguchi K. S., Sawyer D. T. The Redox Chemistry of Manganese(III) and -(IV) Complexes. Israel Journal of Chemistry, 1985; 25(2): 164 – 176.

Bhattacharjee M. N., Chaudhuri M. K., Dutta Purkayastha R. N. Direct synthesis of potassium tris(oxalato)manganate(III) and first synthesis of alkali-metal and ammonium trifluoro(oxalato)manganates(III). Inorganic Chemistry, 1985; 24(3): 447 – 449.

Lis T., Matuszewski J. Structure of potassium tris(oxalato)manganate(III) trihydrate. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 1980; B36(8): 1938 – 1940.

Porter G. B., Doering J. G. W., Karanka S. Photolysis of Transition Metal Oxalato Complex Ions. Journal of the American Chemical Society, 1962; 84(21): 4027 – 4029.

Pimienta V., Lavabre D., Levy G., Micheau J. C. Reactivity of the Mn(III) and Mn(IV) Intermediates in the Permanganate/Oxalic Acid/Sulfuric Acid Reaction: Kinetic Determination of the Reducing Species. The Journal of Physical Chemistry, 1994; 98(50): 13294 – 13299.

Uehiro T., Taminaga I., Yoshino Y. The Decomposition of the Oxalato Complex of Manganese(IV) in Oxalate Buffer Solutions. Bulletin of the Chemical Society of Japan, 1975; 48(10): 2809 – 2812.

Taube H. Catalysis of the Reaction of Chlorine and Oxalic Acid. Complexes of Trivalent Manganese in Solutions Containing Oxalic Acid. Journal of the American Chemical Society, 1947; 69(6): 1418 – 1428.

Adler S. J., Noyes R. M. The Mechanism of the Permanganate-Oxalate Reaction. Journal of the American Chemical Society, 1955; 77(8): 2036 – 2042.

Mukhopadhyay S., Chaudhuri S., Das R., Banerjee R. Kinetics and mechanism of the oxidation of oxalate ion by tris(acetylacetonato)-manganese(III) and its hydrolytic derivatives in aqueous perchlorate media. Canadian Journal of Chemistry, 1993; 71(12): 2155 – 2159.

Donkova B., Mehandjiev D. Mechanism of decomposition of manganese(II) oxalate dihydrate and manganese(II) oxalate trihydrate. Thermochimica Acta, 2004; 421(1 – 2): 141 – 149.

Malcolm J. M., Noyes R. M. The Initial Stages of the Permanganate—Oxalate Reaction. Journal of the American Chemical Society, 1952; 74(11): 2769 – 2775.

Jones T. J., Noyes R. M. Mechanistic details of the oxidation of oxalate by manganese(III). The Journal of Physical Chemistry, 1983; 87(23): 4686 – 4689.

Duke F. R. The Theory and Kinetics of Specific Oxidation. I. The Trivalent Manganese—Oxalate Reaction. Journal of the American Chemical Society, 1947; 69(11): 2885 – 2888.

Kovács K. A., Gróf P., Burai L., Riedel M. Revising the Mechanism of the Permanganate/Oxalate Reaction. The Journal of Physical Chemistry A, 2004; 108(50): 11026 – 11031.

Simmons E. L., Wendlandt W. W. The thermal decomposition of metal complexes—XVII: Potassium tris(oxalato)manganate(III) trihydrate. Journal of Inorganic and Nuclear Chemistry, 1965; 27(11): 2325 – 2329.

Dollimore D. The thermal decomposition of oxalates. A review. Thermochimica Acta, 1987; 117: 331 – 363.

Petrucci R. H. General Chemistry: Principles and Modern Applications 9th Ed. New Jersey: Pearson Education Inc, 2007.

van’t Hoff J. Études de dynamique chimique. Amsterdam: Frederik Müller, 1884.

Arrhenius S. Über die Dissociationswärme und den Einfluss auf der Temperatur auf den Dissociationsgrad der Elektrolyte. Mit einem Holzschnitt. Zeitschrift für Physikalische Chemie. Stöchiometrie und Verwandtschaftslehre, 1889; 4(1): 96 – 116.

Eyring H. The Activated Complex in Chemical Reactions. The Journal of Chemical Physics, 1935; 3(2): 107 – 115.

Eyring H., Polanyi M. Über einfache Gasreaktionen. Zeitschrift für Physikalische Chemie. Abteilung B, Chemie der Elementarprozesse, Aufbau der Materie, 1931; 12(3): 279 – 311.

Evans M. G., Polanyi M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Transactions of the Faraday Society, 1935; 31: 875 – 894.


Refbacks

  • There are currently no refbacks.