Open Access Open Access  Restricted Access Subscription or Fee Access

Utilization of rhizobacteria, Pseudomonas trivialis (L) and Earthworm, Eudrilus eugenae (L) for the qualitative and quantitative yield in the crop of radish, Raphanus sativus) (L).

Vitthalrao Bhimasha Khyade, Seema Karna Dongare, Manali Rameshrao Shinde

Abstract


The specific density of soil microorganisms and earthworms in soil serve to orchestrate the crop growth progression. There is fruitful interactions among soil microorganisms with earthworms and crop in the field that can change the response of growth and development. The rhizobacteria, Pseudomonas trivialis (L) is a deleterious rhizobacteria (DRB) or a plant growth promoting rhi-zobacteria (PGPR) depending on the plant species. It is well known to produce Indole Acetic Acid (IAA), a hormone that can affect plant growth. In the present attempt, rhizobacteria, Pseudomonas trivialis (L) in different concentrations (CFU/ml) (0; 106; 107 and 108) tested on radish, Raphanus sativus (L) to characterize its effect in presence and in absence of earthworms. Presence of rhizobacteria, Pseudomonas trivialis (L), earthworms were found enhancing growth of the radish, Rhaphanus sativus (L) with reference to biomass aboveground and total. This response was found significant over the control. The biomass of radish, Rhaphanus sativus (L) below ground was also found improved up to some extent, but not significant. Radish biomass promoting influence in vermin-field was observed directly proportional to the titer of inoculums of rhizobacteria, Pseudomonas trivialis (L). The rhizobacterial inoculum of about 108 CFU/ml titer was found most suitable for excellent biomass production of radish, Rhaphanus sativus (L). Vermi-field with rhizobacterial population can be utilized for crop yield. Keywords: Rhizobacterial population; Vermi-field; Indole Acetic Acid (IAA).

Full Text:

PDF

References


Ansari, A. A., Saywack, P.(2011): Identification and classification of earthworm species 352 in Guyana. Int. J. Zool. Res., 7, 93-99.

Apine , O. A., Jadhav, J. P., (2011): Optimization of medium for indole-3-acetic acid production using Pantoea agglomeransstrain PVM. J. Appl. Microbiol. 110, 1235–1244.

Arraktham, S., Tancho, A., Niamsup, P., Rattanawaree, P. (2016): The potential of bacteria isolated from earthworm intestines, vermicompost and liquid vermicompost to produce indole-3-acetic acid. J. Agric. Technol. 12, 229-239.

Arthur, T., Sangaré, M., Mboup, C. M., Laossi, K .R. (2017): Comparative effects of plant 360 growth promoters and earthworms (Millsonia anomala) on rooting of cocoa orthotropic cuttings, Afr. J. Biotechnol., 16, 860-868. Barazani, O., Friedman, J. (1999): Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J. Chem. Ecol.25, 2397–2406.

Blanchart, E., Lavelle, P., Braudeau, E., Le Bissonnais, Y. ,Valentin, C. (1997): Regulation of soil structure by geophagous earthworm activities in humid savannas 366 of Côte d'Ivoire. Soil Biol. Biochem.29, 431-439.

Blouin, M., Zuily-Fodil, Y., Pham-Thi, A. T., Laffray, D., Reversat, G., Pando, A., Tondoh, J., Lavelle, P. (2005): Belowground organism activities affect plant aboveground phenotype, inducing plant tolerance to parasites. Ecol. Lett. 8, 202–208.

Brown, G., Pashanasi B., Villenave C., Patron J. C., Senapati B. K., Giri S., Barois I., Lavelle P., Blanchart E., Blakemore R. J., Spain A. V., Boyer J.( 1999): Effects of earthworms on plant production in the tropics, in Lavelle P., Brussaard L., Hendrix P. (eds.): Earthworm management in tropical agroecosystems. Wallingford : CABI, 374 pp. 87-147.

Brown, G.G., Edwards, C.A., Brussaard, L. (2004): How earthworms effect plant growth: burrowing into the mechanisms, in Edwards CA (ed.): Earthworm Ecology. Boca Raton : CRC Press, pp.13-49.

Caceres, A.(1987): Screening on antimicrobial activity of plants popular in Guatemala for the treatment of dermatomucosal diseases. J. Ethnopharm. 20, 223–237.

Canellas, L. P., Olivares F. L., Okorokova-Fac¸anha, A. L. , Fac¸anha, A. R. (2002): Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol.130, 1951–1957.

Dai, J., Becquer, T., Rouiller, J. H., Reversat, G., Bernhard-Reversat, F., Nahmani, J., Lavelle, P. (2004): Heavy metal accumulation by two earthworm species and its relationship to total and DTPA- extractable metals in soils. Soil Biol. Biochem.36, 91–98.

Dubeikovsky, A. N., Mordukhova, E. A., Kochetkov, V. V., Polikarpova F. Y., Boronin A. M., (1993): Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescensBSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol. Biochem.25, 1277–1281.

Edwards, C. A, Bohlen, P. J. (1996): Biology and Ecology of Earthworms. 3rd Edn., Chapman and Hall, London, UK., ISBN-13: 9780412561603, 426.

Fallik, E., Sarig, S., Okon, Y. (1994): Morphology and physiology of plant roots associated withAzospirillum, in Okon Y (ed.)Azospirillum plant associations, CRC press Boca Raton, FL, USA, 77-86. Edwards, C. A., Lofty, J .R. (1972): Biology of Earthworms. Chapman and Hall Ltd., London, UK. 283.

Fitzgerald, J. J.; Black, W. J. M. (1984). "Finishing Store Lambs on Green Forage Crops: 1. A Comparison of Rape, Kale and Fodder Radish as Sources of Feed for Finishing Store Lambs in Autumn". Irish Journal of Agricultural Research. 23 (2/3): 127–136. JSTOR 25556085.

Frankenberger, M.(1988): Pothl-Tryptophan transaminase of a bacterium isolated from the rhizosphere of Festuca octoflora(Gramineae). Soil Biol. Biochem.20, 299-304.

Glick, B. R.(2014): Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res.169, 30–39.

Glick, B. R., Cheng Z., Czarny J., Duan J.(2007): Promotion of plant growth by ACC deaminase-producing soil bacteria, in: Bakker, P. A. H. M., Raaijmakers, J. M., Bloemberg, G., Höfte, M., Lemanceau, P., Cooke, B. M.(Eds.), New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, New York, 329–339.

Gordon, S. A., Weber R. P. (1951): Colorimetric estimation of indole-acetic acid. Plant 409 physiol., 26,192–195.

Gutiérrez, R. M. P., Rosalinda Lule Perez, R. L. (2004): Raphanus sativus (Radish): Their Chemistry and Biology Rosa Martha Review. The Scientific World Journal.4, 811–837.

Ingham, R. E., Trofymow, J. A., Ingham, E. R., Coleman, D. C.(1985): Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth, Ecol Monogr.55, 119–140.

Ismail, S. A.(1997): Vermicology the Biology of Earthworms. Orient Longman Limited, Chennai, 92.

Jana, U., Barot, S., Blouin, M., Lavelle, P., Laffray, D., Repellin, A.(2010): Earthworms influence the production of above- and belowground biomass and the expression of genes involved in cell proliferation and stress responses in Arabidopsis thaliana, Soil Biol. Biochem. 42, 244–252.

Jayakumar, P., Natarajan,S. (2013): Molecular and functional characterization of bacteria isolated from straw and goat manure based vermicompost. Appl. Soil Ecol. 70, 33- 47.

Julka, J. M.(1993): Earthworm resources of India and their utilization in vermiculture. Proceedings of the Earthworm Resources and Vermiculture, (ERV'93), Zoological Survey of India, Solan, India, 51-55.

Juliana Mayz1, Lorna Manzi and América Lárez (2013). Isolation, characterization and identification of hydrocarbonoclastic Pseudomonas species inhabiting the rhizosphere of Crotalaria micans Link. European Journal of Experimental Biology, 2013, 3(5):313-321

Kooch, Y., Jalilvand, H. Bahmanyar , M. A. Pormajidian, M. R. (2008): Abundance, biomass and vertical distribution of earthworms in ecosystem units of hornbeam forest. J. Boil. Sci., 8, 1033-1038.

Kremer, R.J. (2007): Deleterious Rhizobacteria, in Gnanamanickam S.S. (ed.): Plant- 432 Associated Bacteria. Springer, Dordrecht, 335-357.

Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger P., Ineson, P., Heal O.W., Dhilloin, S. (1997): Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil Biol.33, 159–193.

Lavelle, P.(2002): Functional domains in soils, Ecol. Res.17, 441–450.

Lavelle, P.,Spain, A.V.(2001): Soil Ecology. Amsterdam: Kluwer Scientific Publications. 654.

Lund M. B., Holmstrup M., Lomstein B. A., Damgaard C., Schramm A. (2010). Beneficial effect of Verminephrobacter nephridial symbionts on the fitness of the earthworm Aporrectodea tuberculata. Appl. Environ. Microbiol. 76, 4738–4743 10.1128/AEM.00108-10 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975124/

Madhaiyan, M., Poonguzhali, S., Tongmin, S. (2007): Characterization of 1 aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium oryzae and interactions with auxins and ACC regulation of ethylene in canola (Brassica campestris). Planta.226, 867–876.

Madhuri, M. , Sahasrabudhe ,H. K.(2011): Screening of rhizobia for indole acetic acid production. Ann. Biol. Res.2, 460-468.

Muscolo, A. S., Cutrupi, S., Nardi, S. (1998): IAA detection in humic substances. Soil Biol. Biochem. 30, 1199–1201.

N. Bottinelli; T. Henry-des-Tureaux; V. Hallaire; J. Mathieu; Y. Benard; T. Duc Tran and P. Jouquet (2010). Earthworms accelerate soil porosity turnover under watering conditions. Geoderma Volume 156, Issues 1–2, 15 April 2010: 43-47. https://www.sciencedirect.com/science/article/pii/S0016706110000194

Nehl, D. B., Allen, S. J., Brown, J. F.(1996): Deleterious rhizosphere bacteria: an integrating perspective. Appl. Soil Ecol.5, 1–20.

Nienhaus, F. (1969): Phytopathologisches Praktikum. Parey, Berlin.

Nishio, T. (2017): Economic and Academic Importance of Radish, in Nishio, T., Kitashiba H. (eds.): The Radish Genome. Springer International Publishing, pp. 1-10.

Ojha,R. B., Devkota, D.(2014): Earthworms: 'Soil and Ecosystem Engineers' – a Review. World J Agric. Res. 2,6, 257-260.

Olanrewaju, O. S., Glick, B. R., Babalola, O. O. (2017): Mechanisms of action of plant growth promoting bacteria. World J Microbiol. Biotechnol.33,197 .

Paredes, S. D. (1984): Etnobotánica Mexicana: Plant as popularmente empleadas en el Estado de Michocán en el tratamiento de enfermedades hepaticas y vesiculares. Tesis Lic. México D.F. Facultad de Ciencias. UNAM Pedobiologia47,846–856.

Persello-Cartieaux, F., David, P., Sarrobert, C., Thibaud, M.C., Achouak, W., Robaglia,C., Nussaume, L.(2001): Utilization of mutants to analyze the interaction between Arabidopsis thalianaand its naturally root-associated Pseudomonas. Planta 212,190–198.

Price, Andrew J.; Jason, K. Norsworthy (2013). "Cover Crops for Weed Management in Southern Reduced-Tillage Vegetable Cropping Systems". Weed Technology (Submitted manuscript). 27 (1): 212–217. doi:10.1614/WT-D-12-00056.1.

Salkowski, E.(1885): Ueber das verhalten der skatolcarbonsa¨ure im organismus. Hoppe-Seyler's Zeitschrift für Physiologische Chemie, 9,23 –33.

Scheu,S. (2003): Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia., 47, 846-856.

Six,J., Bossuyt, H., Degryze, S., Denef, K. A. (2004): History of research on the link between (micro) aggregates, soil biota and soil organic matter dynamics. Soil Tillage Res. 79, 7–31.

Spaepen, S., Vanderleyden, J., Remans, R.(2007): Indole- 3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev.,31, 425–448. Suarez, D. E. C., Gigon, A., Puga-Freitas, R., Lavelle, P., Velasquez, E., Blouin, M. (2014): Combined effects of earthworms and IAA-producing rhizobacteria on plant growth and development. Appl. Soil Ecol.80, 100-107.

Suslow, T. V., Schroth, M. N. (1982): Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathol.72, 111–115.

Van Groenigen, J. W., Lubbers, I. M., Vos, H. M. J., Brown, G. G., De Deyn, G. B., van Groenigen, K. J.(2014): Earthworms increase plant production: a meta-analysis. Sci Rep., 4, 6365.

Vincent JM (1970) A Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook no. 15. Oxford: Blackwell Scientific Publications

Wahyudi, A., Astuti, R. P., Widyawati, A., Meryandini, A., Nawangsih, A. A. (2011): Characterization of Bacillussp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J. Microbiol. Antimicrob. 3, 34-40.

Yamagishi, H.(2017): Speciation and Diversification of Radish, in Nishio, T., Kitashiba H. (eds.): The Radish Genome. Springer International Publishing, pp. 11-30.

Zhenggao, X., Wang, X., Koricheva, J., Kergunteuil, A., Le Bayon, R.C., Liu , M., Hu, F., Rasmann, S. (2017): Earthworms affect plant growth and resistance against herbivores: A meta-analysis. Funct. Ecol., 1–11.


Refbacks

  • There are currently no refbacks.