Open Access Open Access  Restricted Access Subscription or Fee Access

Response Surface Methodology in the Optimization of Biodiesel Production from Palm Kernel Oil and Cellobiose by Acid Catalysis in Non-solvent Medium

Uche Basil Ekea, Angba Ogli Michaela, Sylvestre Degnia, Samson O. Owaludea, Friday O. Nwosub, Natasha Octoberc, Stephen Oguntoyea, Tenimu Adogahd Abubakar, Liman Isa Alhajia, Fapojuwo Dele Petere

Abstract


Cellobiose, rich in hydroxyl (OH) functional groups was used in a solventless transesterification process with Palm Kernel Oil (PKO) to produce high-quality biodiesel and glycerol. Response Surface Methodology (RSM) was used to examine the effect of reaction temperature, catalyst concentration, reaction time, and cellobiose: oil ratio to optimize the process parameters for high
purity and yield of consequent biodiesel. The process was an acid-catalyzed transesterification reacton of Palm Kernel Oil and cellobiose in a non-solvent medium. An optimal yield of 98% was obtained at temperature of 115oC, 2.25 wt% catalyst concentration, and 7.5 h reaction time while the predicted yield was 97.1092%. Empirical data from the study shows that optimization protocol of the biodiesel production using face-centered central composite design of Design Expert 13.0 software obtained the best reaction conditions. From this study, the optimal conditions were: 115 oC, 2.25 wt% catalyst concentration, and 7.5 h. The consequent result of the study is to save cost, preserve energy and minimize waste generated to achieve a significant breakthrough in biodiesel production and reduce current market price.


Full Text:

PDF

References


Abdulkareem, A. S. Jimoh, A. Afolabi, A. S. Odigure J. O. and Patience D. (2012). Production and Characterization of Biofuel from Non-Edible Oils: An Alternative Energy Sources to Petrol Diesel. Energy Conservation. Chap. 7 171-177 http://dx.doi.org/10.5772/51341

Abigor R. D., Uadia P. O, Foglia T. A., Haas M. J., Jones K. C., Okpefa E, Obibuzor J. U., Bafor M. E. (2000) Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils, Biochem. Soc. Trans. 28 309

Alamu O. J., Waheed M. A., Jekayinfa S. O. (2007a) Biodiesel production from Nigerian palm kernel oil: effect of KOH concentration on yield, Energy for Sustainable Development. 11 77–82.

Alamu O. J., Waheed M. A., Jekayinfa S. O. (2008) Effect of ethanol-palm kernel oil ratio on alkali-catalyzed biodiesel yield, Fuel. 87 1529– 1523

Alamu O. J., Waheed M. A., Jekayinfa S. O., (2007b) Alkali-catalysed laboratory production and testing of biodiesel fuel from Nigerian palm kernel oil, Agricultural Engineering International: the CIGR Journal of Scientific Research and Development. 9 7–9.

Aliozo, O. S., Emembolu, L. N., Onukwuli, O. D., and Access, O. (2017). Optimization of melon oil methyl ester production using response surface methodology. Biofuels Eng., 2 1–10.

Aryasomayajula Venkata Satya Lakshm S. B., N. Subramania Pillai M. S. B. Khadhar Mohamed, and A. Narayanan. (2020). Biodiesel production from rubber seed oil using calcined eggshells impregnated with Al2O3 as a heterogeneous catalyst: a comparative study of RSM and ANN optimization. Brazilian Journal of Chemical Engineering 37 351–68. doi:10.1007/s43153-020-00027–9.

Athar, M., Zaidi, S., and Hassan, S. Z. (2020). Intensification and optimization of biodiesel production using microwave-assisted acid - organo catalyzed transesterification process. Scientific Reports, 0123456789, 1–18. https://doi.org/10.1038/s41598–020–77798–1

Ayoola, A. A., Hymore, F. K., Omonhinmin, C. A., Babalola, P. O., and Fayomi, O. S. I. (2020). Response surface methodology and artificial neural network analysis of crude palm kernel oil biodiesel production. Elsevier. 28 2 https://doi.org/10.1016/j.cdc.2020.100478

Benavides P. T., Diwekar U. (2012). Optimal control of biodiesel production in a batch reactor Part I: Deterministic control, Fuel, 94, 211–217

Betiku E., and Ajala S. O. (2014). Modeling and optimization of Thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa paradisiacal (plantain) peel as a heterogeneous base catalyst: a case of artificial neural network vs. response surface methodology. Ind. Crop. Prod. 53 314–322. doi:10.1016/j.indcrop.2013.12.046

Betiku E., Odude V. O., Ishola N. B., Bamimore A., Osunleke A. S., and Okeleye A. A. (2016). Predictive capability evaluation of RSM, ANFIS, and ANN: a case of reduction of high free fatty acid of palm kernel oil via esterification process. Energy Convers. Manag. 124 219–230. doi:10.1016/j. enconman.2016.07.030

Candeia R. A., Sliva M. C. D, Carvalho F., Brasilino M. G. A., Bicudo T.C., Santos I. M. G. (2009). Influence of soybean content on basic properties of biodiesel – diesel blends, Fuel 88, 738–743

Centi G., van Santen R. A. (2007). Catalysis for Renewables; From Feedstock to Energy Production. Germany, Wiley-VCH, p.54-60. Doi:10.1595/147106708X364922

Chen, Q., Xu, A., Li, Z., Wang, J., and Zhang, S. (2011). Influence of anionic structure on the dissolution of chitosan in 1-butyl-3-methylimidazolium-based ionic liquids. Green Chemistry, 13 3446–3452.

Chumuang, N., and Punsuvon, V. (2017). Response Surface Methodology for Biodiesel Production Using Calcium Methoxide Catalyst Assisted with Tetrahydrofuran as Cosolvent. Hindawi Journal of Chemistry, 2017 2–8

Demirbas A. (2006). Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristic, Energy Conversion, and Management, 47 2771–2282

Demirbas A. (2008). Relationship derived from physical properties of vegetable oil and biodiesel fuels, Fuels, 87, 1743 – 1748

Demirbas A. (2009). Biohydrogen for Future Engine Fuel Demands. Springer XII, 276 46 http://www.springer.com/978–1–84882–510–9

Dilip Ahuja et Marika Tatsutani, « Sustainable energy for developing countries », S.A.P.I.EN.S [En ligne], 2.1 | 2009, mis en ligne le 27 novembre 2009, consulté le 28 juin 2022. URL : http:// journals.openedition.org/sapiens/823

Enweremadu C. C., Rutto H. L. and Oladeji J. T. (2011). Investigation of the relationship between flow Properties of Shea butter biodiesel and their blends with diesel fuel, International Journal of the Physical Science, 6 758–767

Freedman B, Butterfield R. O, Pryde E. H. (1986). Transesterification kinetics of soybean oil 1. Journal of the American Oil Chemists’ Society 63:1375–80.

Ganeshmoorthy V., M. Muthukannan and Thirugnanasambandam M. (2019). Comparison of linear regression and ANN of fish oil biodiesel properties prediction. Journal of Physics: Conference Series 1276:012074. doi:10.1088/1742–6596/1276/1/012074.

Gardy J., Hassanpour A., Lai X., Ahmed M. H., and Rehan M. (2017). Biodiesel production from used cooking oil using a novel surface functionalized TiO2 nano-catalyst. Appl. Catal. B Environ. 207 297–310. doi:10.1016/j. apcatb.2017.01.080

Ishola, F., Adelekan, D., Mamudu, A., Abodunrin, T., Aworinde, A., Olatunji, O., and Akinlabi, S. (2020). Heliyon Biodiesel production from palm olein : A sustainable bioresource for Nigeria. Heliyon, 6 e03725. https://doi.org/10.1016/j.heliyon.2020.e03725

Khan, I. U., Yan, Z., and Chen, J. (2019). Optimization, Transesterification and Analytical Study of Rhus typhina Non-Edible Seed Oil as Biodiesel Production. Energies, 12 22. https://doi.org/10.3390/en12224290

Lee H.V., Yunus R., Juan J. C., Taufiq-Yap Y. H. (2011). Process optimization design for jatropha-based biodiesel production using Response Surface Methodology, Fuel Process Technology, 92, 2420–2428

Ma F, Hanna M. A. (1999). Biodiesel production: a review. Bioresource Technology. 70(1):1–15.

Mohammad Anwar, Mohammad G. Rasul, Nanjappa Ashwath, and Md Mofijur Rahman. (2018). Optimization of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method. https://doi.org/10.3390/en11102566

Niu S., Ning Y., Lu C., Han K., Yu H., and Zhou Y. (2018). Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Convers. Manag. 163 59–65. doi:10.1016/j.enconman.2018.02.055

Ofoefule A. U., Esonye C., Onukwuli O. D., Nwaeze E., and Ume C. S. (2019). Modeling and optimization of African pear seed oil esterification and transesterification using artificial neural network and response surface methodology comparative analysis. Ind. Crops Prod. 140 1–16. doi:10.1016/ j.indcrop.2019.111707

Ohale, P. E. Uzoh, C. F. and Onukwuli, O. D. (2017). Optimal factor evaluation for the dissolution of alumina from azaraegbelu clay in acidic solution using RSM and ANN comparative analysis. South African Journal of Chemical engineering, 43–54

Okpalaeke K. E., Ibrahim T. H., Latinwo L. M., and Betiku E. (2020). Mathematical Modeling and Optimization Studies by Artificial Neural Network, Genetic Algorithm and Response Surface Methodology : A Case of Ferric Sulfate – Catalyzed Esterification of Neem (Azadirachta indica) Seed Oil. 8 1–14. doi.org/10.3389/fenrg.2020.614621

Okpalaeke, K. E. Ibrahim, T. H. Latinwo, L. M., and Betiku, E. (2020). Mathematical Modeling and Optimization Studies by Artificial Neural Network, Genetic Algorithm and Response Surface Methodology : A Case of Ferric Sulfate – Catalyzed Esterification of Neem (Azadirachta indica) Seed Oil. 8 1–14. https://doi.org/10.3389/fenrg.2020.614621

Pradhan S., Madankar C. S., Mohanty P., Naik S. N., (2012). Optimization of reactive extraction of castor seed to produce biodiesel using response surface methodology, Fuel, 97, 848–855

Ralph P. Overend, (2004). Thermochemical Conversion of Biomass, Renewable Energy Sources Charged with Energy from the Sun and originated from Earth-Moon Interactions –Encyclopedia of Life Support Systems (EOLSS),.

Razali N. Mootabadi H., Salamatinia B., Lee K. T., Abdullah A. Z. (2010). Optimization of process parameters for alkaline – catalyzed transesterification reaction of palm oil using Response Surface Methodology, Sains Malaysiana, 39 805 – 809

Robles-Medina A, Gonzalez-Moreno P. A, Esteban-Cerdan L, Molina-Grima E. (2009). Biocatalysis: towards ever greener biodiesel production. Biotechnology Advances 27(4) 398–408.

Sani Y. M., Daud W. M. A. W., and Abdul Aziz A. R. (2013). Solid acid-catalyzed biodiesel production from a microalgal oil-The dual advantage. J. Environ. Chem. Eng. 1 113–121. doi:10.1016/j.jece.2013.04.006

Schwab A. W, Bagby M. O, Freedman B (1987). Preparation and properties of diesel fuels from vegetable oils. Fuel 66:1372–8.

Shan R., Lu L., Shi Y., Yuan H., and Shi J. (2018). Catalysts from renewable resources for biodiesel production. Energy Convers. Manag. 178 277–289. doi:10.1016/j.enconman.2018.10.032

Sharma Y. C, Singh B, Upadhyay S. N. (2008). Advancements in development and characterization of biodiesel: a review. Fuel 87(12):2355–77.

Sugiharto R. Hidayati S. and Cholik R. (2019). Application of response surface methodology to evaluate biodiesel production from spent bleaching earth by in situ transesterification process Application of response surface methodology to evaluate biodiesel production from spent bleaching earth by in situ transesterification process. https://doi.org/10.1088/1755-1315/230/1/012074

Uzoh, C. F., Onukwuli, O. D., Ozofor, I. H. and Odera R. S. (2019). Encapsulation of urea with alkyd resin-starch membranes for controlled N2 release: synthesis, characterization, morphology, and optimum N2 release. Process Safety and Environmental Protection 121 133–142.

Waheed A., Samuel O. D., Bolaji B. O., and Dairo, O. U. (2015). RSM Based optimization of biodiesel production from tobacco seed oil. In: Renewable Energy and Sustainable Development, 5 85–101

Yao K., and Tang C. (2013). Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules, 46 1689-1712.

Yesilyurt M. K., Arslan M., and Eryilmaz T. (2018). Application of response surface methodology for the optimization of biodiesel production from yellow mustard ( Sinapis alba L.) seed oil. International Journal of Green Energy, 00 1–12. https://doi.org/10.1080/15435075.2018.1532431


Refbacks

  • There are currently no refbacks.