Open Access Open Access  Restricted Access Subscription or Fee Access

Bacterial Exopolysaccharides and Their Applications: A Short Review

Arnab Kanti Ojha

Abstract


Extracellular polymer substances (EPS) are metabolic products of bacteria which accumulate on the
cell surface and serve as a protective layer against harsh environmental condition. EPS also serve as
a source of energy during the starvation of bacteria. The major structural component of EPS is
polysaccharide, commonly known as exopolysaccharide, is either neutral or polyanionic in nature.
Polysaccharides in EPS found different in sugar compositions and moieties, chain length, repeating
units and substitutions in the side chains. Recently, the usefulness of bacterial exopolysaccharides,
has led to discovery by advance technology are found to numerous industrial and medical
applications. The properties of exopolysaccharides have changed the industrial and medical sectors
due to their various applications and prospects. These applications have been comprehensive in areas
such as nutraceutical functional food, cosmetics, pharmacological, herbicides and insecticides, while
prospects include uses as antithrombotic, immunomodulator, anticancer and as bio flocculants. Go
through this article to know different types of bacterial exopolysaccharides, and their different
functions in human beings.


Full Text:

PDF

References


Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol. 2010 Aug;8(8):578-92. 2. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, Martin AA, da Silva R, de Freitas RA. Bacterial cellulose in biomedical applications: A review. Int J Biol Macromol. 2017 Nov; 104(Pt A):97-106.

Pro Market Research. 2019. Global Microbial and Bacterial Cellulose Market 2019—By Manufacturers, Regions, Type, Application, Sales, Revenue, and Forecast to 2025. https://www.promarketresearch.com/global‐microbialand‐bacterial‐cellulose‐market‐2018‐by‐25638.html.accessed on 10 January 2021.

Transparency Market Research. 2020. Strengthening Web of Xanthan Gum Applications Across Various End‐Users Laying Red Carpet of Growth, Global Xanthan Gum Market to Reach Valuation of ~US$ 1.5 bn by End of Forecast Period: TMR. https://www.prnewswire.com/news-releases/strengthening-web-of-xanthan-gum-applications-across-various-end-users-laying-red-car pet-of-growth-global-xanthan-gum-market-to-reach-valuation-of-us-1-5-bn-by-end-of-forecast-pe riod-tmr-301125396.html.

Dogsa, I., Kriechabaum, M., Stopar, D., Laggner P. Structure of Bacterial Extracellular Polymeric Substances at Different pH Values as Determined by SAXS. Biophys. J. 2005, 89, 2711-2720.

P.Ruas-Madiedo, J. Hugenholtz, P. Zoon, Int. Dairy J. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria.2002;12(2):163-171.

Angelin, J.; Kavitha, M. Exopolysaccharides from probiotic bacteria and their health potential. Int. J. Biol. Macromol. 2020; 162: 853–865.

Hussain, A.; Zia, K.M.; Tabasum, S.; Noreen, A.; Ali, M.; Iqbal, R.; Zuber, M. Blends and composites of exopolysaccharides properties and applications: A review. Int. J. Biol. Macromol. 2017;94:10–27.

Chaisuwan, W.; Jantanasakulwong, K.; Wangtueai, S.; Phimolsiripol, Y.; Chaiyaso, T.; Techapun, C.; Phongthai, S.; You, S.; Regenstein, J.M.; Seesuriyachan, P. Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. Food Bioscience. 2020; 35: 100564.

Harutoshi, T. 2013. Exopolysaccharides of lactic acid bacteria for food and colon health applications. Biochemistry, genetics, and molecular biology. In: Lactic acid bacteria. https://www.intechopen.com/chapters/42337.

Kornmann, H.; Duboc, P.; Marison, I.; Stockar, U.V. 2003. Multi Genome Sequence of heteropolysaccrides-forming acetic acid bacteria. https://journals.asm.org/doi/10.1128/genome A.00185-17.

Sk3odkowska, A.; Matlakowska, R.; Biot. Lett. 1998, 20, 229-233.

Otero, A.; Vincenzini, M.; J, Biouechnol. 2003, 102, 173-152.

Linker, A.; Jones, R.S.; J. Biol. Chem. 1996, 241, 3845-3851

Pindar, D.F.; Bucke, C. The biosynthesis of alginic acid by Azotobacter vinelandii

; Biochemistry Journal. 1975;152(3): 617-622. 16. Parolis H, Parolis LA, Boán IF, Rodríguez-Valera F, Widmalm G, Manca MC, Jansson PE, Sutherland IW. The structure of the exopolysaccharide produced by the halophilic Archaeon Haloferax mediterranei strain R4 (ATCC 33500). Carbohydr Res. 1996 Dec 13; 295: 147-56.

Yildiz, H.; Karatas, N. Microbial exopolysaccharides: Resources and bioactive properties. Process. Biochem. 2018; 72:41–46.

Schembri, M.A.; Dalsgaard, D.; Klemm, P.capsule shields the functions of short bacterial adhesins. J. Bacteriol. 2004; 186:1279-1257.

Varki, A., Cummings, R.; Esko J.D. Bacterial Polysaccharides. In Essentials of Glycomics, 2nd ed. Cold Spring Harbor, New York, USA. Cold Spring Laboratory Press; 1999. 20. Sutherland IW. The biofilm matrix--an immobilized but dynamic microbial environment. Trends Microbiol. 2001 May;9(5):222-227 21. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010 Sep;8(9):623-33.

Daegelen, P.; Studier, F.W.; Lenski, R.E.; Kim, J.F. Mol. Biol. 2009, 394, 634-643.

Dos Santos, A.L.S.; Galdino, A.C.M.; De Mello, T.P.; Ramos, L.D.S.; Branquinha, M.H.; Bolognese, A.M.; Columbano, J.; Roudbary, M.; Neto, J.C. What are the advantages of living in a community? A microbial biofilm perspective! Memórias do Instituto Oswaldo Cruz 2018, 113. 24. Matsui MS, Muizzuddin N, Arad S, Marenus K. Sulfated polysaccharides from red microalgae have anti-inflammatory properties in vitro and in vivo. Appl Biochem Biotechnol. 2003 Jan;104(1):13-22. 25. Lee JB, Hayashi T, Hayashi K, Sankawa U. Structural analysis of calcium spirulan (Ca-SP)-derived oligosaccharides using electrospray ionization mass spectrometry. J Nat Prod. 2000 Jan;63(1):136-138.

De Morais, M.G.; Stillings, C.; Dersch, R.; Rudisile, M.; Pranke, P.; Costa, J.; Wendorff, A, V. J. Bio-resource Technology. 2010, 101, 2872-2876.

Osemwegie, O.O.; Adetunji, C.O.; Ayeni, E.A.; Adejobi, O.I.; Arise, R.O.; Nwonuma, C.O.; Oghenekaro, A.O.Exopolysaccharides from bacteria and fungi: Current status and perspectives in Africa. Heliyon 2020, 6, e04205.

Yildiz, H.; Karatas, N. Microbial exopolysaccharides: Resources and bioactive properties. Process. Biochem. 2018, 72, 41–46.

Bajpai, V.K., I.A. Rather, R. Majumder, S. Shukla, A. Aeron, K. Kim, S. Kang, R.C. Dubey, D.K. Maheshwari, J. Lim and Y. Park. Exopolysaccharide and lactic acid bacteria: Perception, functionality, and prospects. Bangladesh J. Pharmacol., 2016, 11, 1-23.

Silver, R.P.; Aaronson, W.; Vann, W.F. The K1 capsular polysaccharide of Escherichia coli. Rev. Infect. Dis. 1998;10: 282-286.

De Angelis, P.L.; White, C.L.J. Identification and molecular cloning of heparosan synthase from Pasteurella multocida. Biol. Chem. 2002; 277(9):7209-7213.

Roberts, I.S.. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annual Review Microbiology. 1996; 50: 285-315.

Straus, D.C.; Atkisson, D.L.; Garner, C.W. Importance of a lipopolysaccharide-containing extracellular toxic complex in infections produced by Klebsiella pneumoniae. Infect. Immun. 1985; 50: 787-795.




DOI: https://doi.org/10.37628/jaac.v7i1.1122

Refbacks

  • There are currently no refbacks.