Open Access Open Access  Restricted Access Subscription or Fee Access

Macro-compounds and Macro-cycles with Their Applications

Nagham Mahmood Aljamali, Maysaa A Alhar

Abstract


Macro-compounds represent an ancient class of compounds that enter into coordination chemistry as a ligands such as (crown ethers, aza, thia and others), or in the field of organic chemistry through large cyclic compounds such as porphyrins, vitamins and others, where corona ethers are strongly linked with specific cations forming coordination complexes, In which the oxygen atoms occupy positions suitable for coordination with a cation located inside the ring, and in which the hydrophobic (hydrophobic) carbon structure forms the outer framework of the complex. Cations usually have good solubility in solvents of non-polarity, so crown ethers are of interest in phase transition catalysts. The type of cation bound to the coronal ether depends on the size of the ring, as there is often a proportion between the size of the cavity inside the ring and the diameter of the cation. For example, (Tag-6 ether) has a high affinity for potassium cations, (Tag-5 ether 15) has an affinity for sodium cations, and (Tag- 4 ether) has a high affinity for lithium cations., Examples of biological macromolecules include biopolymers (such as carbohydrates, proteins, and lipids) and synthetic polymers (plastics, synthetic fibers, and rubber).


Full Text:

PDF

References


Zhichang Liu, Siva Krishna Mohan Nalluria, J. Fraser Stoddart. Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chemical Society Reviews. 2017; 46 (9): 2459–2478.

Hamilton-Miller, JM. Chemistry and Biology of the Polyene Macrolide Antibiotics". Bacteriological Reviews.1973; 37 (2): 166–196.

Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. Journal of the American Chemical Society.1967; 89 (26): 7017–7036.

Luther, A.; Moehle, K.; Chevalier, E.; Dale, G. Obrecht, D. Protein epitope mimetic macrocycles as biopharmaceuticals. Curr. Opin. Chem. Biol. 2017; 38: 45-51.

Hoveyda, H.R.; Marsault, E.; Gagnon, R.; et al. Optimization of the potency and pharmacokinetic properties of a macrocyclic ghrelin receptor agonist (Part I): Development of ulimorelin (TZP-101) from hit to clinic. Journal of Medicinal Chemistry 2011; 54(24): 8305−8320.

Hoveyda, H.R.; Fraser, G.L.; Marsault, E.; et al. Optimization of a macrocyclic ghrelin receptor agonist (Part II): Development of TZP-102. In E. Marsault, M.L. Peterson (Eds.) Practical Medicinal Chemistry with Macrocycles: Design, Synthesis, and Case Studies. Wiley. 2017: 545-558.

Peterson, M. L. The Synthesis of Macrocycles for Drug Discovery. In J. Levin (Ed.) Macrocycles in Drug Discovery, Royal Society of Chemistry, Cambridge, 2014; 398-486.

Imd Karm Alwn, Hasaneen Kudhair Abdullabass, Nagham Mahmood Aljamali., Invention of (Gluta.Sulfazane-Cefixime) Compounds as Inhibitors of Cancerous Tumors. Journal of Cardiovascular Disease Research. 2020;11(2): 44-55.

Nagham Mahmood Aljamali. Synthesis and Chemical Identification of Macro Compounds of (Thiazol and Imidazol)"., Research Journal of Pharma and Technology.2015; 8(1): 78-84.

Nagham Mahmood Aljamali., Synthesis of Antifungal Chemical Compounds from Fluconazole with (Pharma-Chemical) Studying, Research journal of Pharmaceutical, biological, and chemical sciences. 2017; 8 (3): 564 -573.

Frost, J.R.; Smith, J.M.; Fasan, R. Design, synthesis, and diversification of ribosomally derived peptide macrocycles. Current Opening in Structural Biology. 2013; 23(4): 571-580.

Bashiruddin, N.K.; Suga, H. Construction and screening of vast libraries of natural productlike macrocyclic peptides using in vitro display technologies. Current Opening of Chemical Biology 2015; 24: 131–138.

Nicola, T.; Brenner, M.; Donsbach, K.; Kreye, P. First Scale-Up to Production Scale of a Ring Closing Metathesis Reaction Forming a 15-Membered Macrocycle as a Precursor of an Active Pharmaceutical Ingredient. Organic Process Research and Development. 2005; 9(4): 513-515.

Ye. N.K.; Farina, V.; Houpis, I.N.; et al. Efficient large-scale synthesis of BILN 2061- a potent HCV protease inhibitor, by a convergent approach based on ring-closing metathesis. The Journal of Organic Chemistry. 2006; 71(19): 7133-7145.

Villar, E.A.; Beglov, D.; Chennamadhavuni, S.; Porco, J.A.,Jr.; Kozakov, D.; Vajda, S.; Whitty, A. How proteins bind macrocycles. Nature Chemical Biology. 2014; 10(9): 723-731.

Nielsen, D.S.; Shepherd, N.E.; Xu, W.; Lucke, A.J.; Stoermer, M.J.; Fairlie, D.P. Orally Absorbed Cyclic Peptides. Chemical Review. 2017; 117(12): 8094-8128.

Wenger, R.M.; Payne, T.G.; Schreier, M.H. Cyclosporine: Chemistry, Structure-Activity Relationships and Mode of Action. Prog. Clin. Biochem. Med. 1986, 3, 157-191.

Whitty, A.; Zhong, M.; Viarengo, L.; Beglov, D.; Hall, D.R.; Vajda, S. Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Discovery Today. 2016; 21(5): 712-717.

Ahlbach, C.L.; Lexa, K.W.; Bockus, A.T.; Chen, V.; Crews, P.; Jacobson, M.P.; Lokey, R.S. Beyond cyclosporine A: conformation-dependent passive membrane permeabilities of cyclic peptide natural products. Future Medicinal Chemistry. 2015; 7(16): 2021-2030.

Pye, C. R.; Hewitt, W. M.; Schwochert, J.; Haddad, T. D.; Townsend, C. E.; Etienne, L.; Lao, Y.; Limberakis, C.; Furukawa, A.; Mathiowetz, A. M.; Price, D. A.; Liras, S.; Lokey, R. S. Nonclassical size dependence of permeation defines bounds for passive absorption of large drug molecules. Journal of Medicinal Chemistry. 2017; 60(5): 1665−1672.

Over, B.; Matsson, P.; Tyrchan, C.; Artursson, P.; et al. Structural and conformational determinants of macrocycle cell permeability. Nature Chemical Biology. 2016; 12(12): 1065-1074.

Opera, T.I. Current trends in lead discovery: Are we looking for the appropriate properties? Journal of Computer-Aided Molecular Design 2002; 16: 325-334.

Wenlock, M.C.; Austin, R.P.; Barton, P.; Davis, A.M.; Leeson, P.D. A Comparison of Physiochemical Property Profiles of Development and Marketed Oral Drugs. Journal of Medicinal Chemistry. 2003; 46(7): 1250-1256.

Chen, I.J.; Foloppe, N. Tackling the conformational sampling of larger flexible compounds and macrocycles in pharmacology and drug discovery. Bio-organic and Medicinal Chemistry. 2013; 21(24): 7898-7920.

Allen, S.E.; Dokholyan, N.V.; Bowers, A.A. Dynamic Docking of Conformationally Constrained Macrocycles: Methods and Applications. ACS Chemical Biology. 2016; 11(1): 10-24.

Watts, K.S.; Dalai, P.; Tebben, A.J.; Cheney, D.L.; Shelley, J.C. Macrocycle Conformational Sampling with MacroModel. Journal of Chemical Information and Modelling. 2014; 54(10): 2680–2696.

Giordanetto, F.; Kihlberg, J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? Journal of Medicinal Chemistry. 2014; 57(2): 278-295.

MCauley, J.A.; Rudd, M.T. Hepatitis C virus NS3/4a protease inhibitors. Curr. Opin. Pharmacol. 2016; 30: 84–92.

Pillaiyar, T.; Namasivayam, V.; Manickam, M. Macrocyclic Hepatitis C Virus NS3/4A Protease Inhibitors: An Overview of Medicinal Chemistry. Curr. Med. Chem. 2016; 23(29): 3404-3447.

Johnson, T.W. Richardson, P.F.; Bailey, S. et al. Discovery of (10R)-7-amino-12-fluoro- 2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno) pyrazolo[4,3-h] [2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. Journal of Medicinal Chemistry. 2014; 57(11): 4720-4744.

Basit, S.; Ashraf, Z.; Lee, K.; Latif, M. First macrocyclic 3rd-generation ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib. European Journal Medicinal Chemistry. 2017;134: 348-356.

William, A.D.; Lee, A.C.; Goh, K.C.; et al. Discovery of kinase spectrum selective macrocycle (16E)-14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo heptacosa-1(25),2(26),3,5,8(27),9,11,16,21,23-decaene (SB1317/TG02), a potent inhibitor of cyclin dependent kinases (CDKs), Janus kinase 2 (JAK2), and fms-like tyrosine kinase-3 (FLT3) for the treatment of cancer. Journal of Medicinal Chemistry. 2012; 55(1): 169-196.

Verstovsek, S.; Komrokji, R.S. A comprehensive review of pacritinib in myelofibrosis. Future Oncol. 2015; 11(20): 2819-2830.

Cardote, T.A. Ciulli, A. Cyclic and Macrocyclic Peptides as Chemical Tools to Recognize Protein Surfaces and Probe Protein-Protein Interactions. ChemMedChem 2016, 11(8), 787-794.

Dougherty, P.G.; Qian, Z.; Pei, D.; Macrocycles as protein-protein interaction inhibitors. Biochemistry Journal. 2017; 474(7): 1109-1125.

Doak, B.C.; Zheng, J.; Dobritzsch, D.; Kihlberg, J. How beyond rule of 5 drugs and clinical candidates bind to their targets. Journal of Medicinal Chemistry. 2016; 59(6): 2312–2327.

Walensky, L.D.; Bird, G.H. Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem. 2014, 57(15), 6275-6288.

Cromm, P.M.; Spiegel, J. Grossmann, T.N. Hydrocarbon stapled peptides as modulators of biological function. ACS Chemical Biology. 2015; 10(6): 1362-1375.

Chang, Y.S.; Graves, B.; Guerlavais, V. et al. September 2013. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proceedings of National Academy of Sciences. 110(36): 3445-3454. Available online: https://www.pnas.org/content/110/36/E3445.

Meric-Bernstam, F.; Saleh, M.N.; Infante, J.R.; et al. J. Clin. Oncol. 2017, 35(15 suppl.), 2505 (Oral presentation at 2017 ASCO Meeting, Chicago, IL, June 2017, Abstract 2505).

Iyer VV. A Review of Stapled Peptides and Small Molecules to Inhibit Protein-Protein Interactions in Cancer. Current Medicinal Chemistry. 2016; 23(27): 3025-3043.

Serhii H. Kharchenko, Anna D. Iampolska, Dmytro S. Radchenko, Bohdan V. Vashchenko, Zoia V. Voitenko, Oleksandr O. Grygorenko. A Diversity‐Oriented Approach to Large Libraries of Artificial Macrocycles. European Journal of Organic Chemistry 2021; 2021 (17): 2313-2330.

Saumitra Sengupta, Goverdhan Mehta. Macrocyclization via C–H functionalization: a new paradigm in macrocycle synthesis. Organic & Biomolecular Chemistry 2020; 18 (10): 1851-1876.

Hikari Ochiai, Ko Furukawa, Haruyuki Nakano, Yoshihiro Matano. Doubly Strapped Redox-Switchable 5,10,15,20-Tetraaryl-5,15-diazaporphyrinoids: Promising Platforms for the Evaluation of Paratropic and Diatropic Ring-Current Effects. The Journal of Organic Chemistry 2021; 86 (3): 2283-2296.

Tsubasa Nishimura, Takahisa Ikeue, Osami Shoji, Hiroshi Shinokubo, Yoshihiro Miyake. Iron (III) 5,15-Diazaporphyrin Catalysts for the Direct Oxidation of C(sp3)–H Bonds. Inorganic Chemistry 2020; 59 (21): 15751-15756.

Chengjie Li, Qizhao Li, Jiewei Shao, Zhangfa Tong, Masatoshi Ishida, Glib Baryshnikov, Hans Ågren, Hiroyuki Furuta, Yongshu Xie. Expanded N-Confused Phlorin: A Platform for a Multiply Fused Polycyclic Ring System via Oxidation within the Macrocycle. Journal of the American Chemical Society 2020; 142 (40): 17195-17205.

Yuanyuan Li, Mingbo Zhou, Ling Xu, Bixiang Zhou, Yutao Rao, Haigen Nie, Tingting Gu, Jie Zhou, Xu Liang, Bangshao Yin, Weihua Zhu, Atsuhiro Osuka, Jianxin Song. Simultaneous Implementation of N-Heterocycle-Fused Bridge and Modified Pyrrole Unit on Ni (II) Porphyrin Dimers. Organic Letters 2020; 22 (15): 6001-6005.

Masataka Umetani, Gakhyun Kim, Takayuki Tanaka, Dongho Kim, Atsuhiro Osuka. Rational Synthesis of 5,10-Diazaporphyrins via Nucleophilic Substitution Reactions of α,α′-Dibromotripyrrin and Dihydrogenation to Give 5,10-Diazachlorins. The Journal of Organic Chemistry 2020; 85 (5): 3849-3857.

James T. Brewster, II, Hadiqa Zafar, Harrison D. Root, Gregory D. Thiabaud, Jonathan L. Sessler. Porphyrinoid f-Element Complexes. Inorganic Chemistry 2020; 59 (1): 32-47.

Yanming Zhao, Shibo Qi, Zheng Niu, Yunlei Peng, Chuan Shan, Gaurav Verma, Lukasz Wojtas, Zhenjie Zhang, Bao Zhang, Yaqing Feng, Yu-Sheng Chen, Shengqian Ma. Robust Corrole-Based Metal–Organic Frameworks with Rare 9-Connected Zr/Hf-Oxo Clusters. Journal of the American Chemical Society. 2019; 141 (36): 14443-14450.

Asahi Takiguchi, Norihito Fukui, Hiroshi Shinokubo. Synthesis of Hydroxyisooxophlorins by Oxidative Degradation of meso-Hydroxyporphyrins. Organic Letters 2019; 21 (11): 3950-3953.

Hiroto Omori, Satoru Hiroto, Youhei Takeda, Heike Fliegl, Satoshi Minakata, Hiroshi Shinokubo. Ni (II) 10-Phosphacorrole: A Porphyrin Analogue Containing Phosphorus at the Meso Position. Journal of the American Chemical Society. 2019; 141 (12): 4800-4805.

Simon Pascal, Sylvain David, Chantal Andraud, Olivier Maury. Near-infrared dyes for two-photon absorption in the short-wavelength infrared: strategies towards optical power limiting. Chemical Society Reviews 2021; 50 (11): 6613-6658

Ming‐Chung Yang, Ming‐Der Su. Mechanistic Insight into Chemical Reactions of Acyclic Diboryloxy Carbenes: the Activation Strain Model Study. European Journal of Inorganic Chemistry 2021;(10): 929-938.

Asahi Takiguchi, Seongsoo Kang, Norihito Fukui, Dongho Kim, Hiroshi Shinokubo. Dual Emission of a Free‐Base 5‐Oxaporphyrinium Cation from its cis ‐ and trans ‐NH Tautomers . Angewandte Chemie 2021; 133 (6): 2951-2955.

Asahi Takiguchi, Seongsoo Kang, Norihito Fukui, Dongho Kim, Hiroshi Shinokubo. Dual Emission of a Free‐Base 5‐Oxaporphyrinium Cation from its cis ‐ and trans ‐NH Tautomers. Angewandte Chemie International Edition 2021; 60 (6): 2915-2919. 57. Tsubasa Nishimura, Takahiro Sakurai, Hiroshi Shinokubo, Yoshihiro Miyake. Iron hexamesityl-5,15-diazaporphyrin: synthesis, structure, and catalytic use for direct oxidation of sp 3 C–H bonds. Dalton Transactions 2021,

Jean-François Longevial, Kazuya Miyagawa, Hiroshi Shinokubo. Site-selective halogenation on meso -mesityl substituents of 10,20-dimesityl-5,15-diazaporphyrins with an AuX 3 /AgOTf combination. Dalton Transactions 2020; 49 (42) : 14786-14789.

Atsumi Yagi, Hiroshi Shinokubo. meso ‐Diazacorrphycenes: Neighboring Effect of Two Nitrogen Atoms. Chemistry – A European Journal 2020; 26 (37):8210-8213.

Stéphane A. Baudron. Dipyrrin based metal complexes: reactivity and catalysis. Dalton Transactions 2020; 49 (19) : 6161-6175.

Wen Xi Chia, Mayu Nishijo, Seongsoo Kang, Juwon Oh, Tsubasa Nishimura, Hiroto Omori, Jean‐François Longevial, Yoshihiro Miyake, Dongho Kim, Hiroshi Shinokubo. Site‐Selective N‐Methylation of 5,15‐Diazaporphyrins: Reactive Cationic Porphyrinoids that Provide Isoporphyrin Analogues. Chemistry – A European Journal 2020; 26 (12) : 2754-2760.

Daisuke Yamashita, Hiroto Omori, Norihito Fukui, Hiroshi Shinokubo. Synthesis and properties of 5-aza-15-thiaporphyrins. Journal of Porphyrins and Phthalocyanines 2020; 24: 84-89.

Keisuke Sudoh, Yuna Satoh, Ko Furukawa, Haruyuki Nakano, Yoshihiro Matano. Synthesis and optical, magnetic, and electrochemical properties of 5,10,15,20-tetraaryl-5,15-diazaporphyrin — tertiary amine conjugates. Journal of Porphyrins and Phthalocyanines 2020; 24: 286-297.

Akihide Nishiyama, Yuki Tanaka, Shigeki Mori, Hiroyuki Furuta, Soji Shimizu. Oxidative nitration reaction of antiaromatic 5,15-dioxaporphyrin. Journal of Porphyrins and Phthalocyanines 2020, 24, 355-361.

Soji Shimizu. 5,15-Diheteroporphyrins Synthesized from α, α'-Dihalodipyrrin as a Key Building Block. HETEROCYCLES 2020, 100 (8), 1123.

Atsumi Yagi, Takeshi Kondo, Daisuke Yamashita, Naruhiko Wachi, Hiroto Omori, Norihito Fukui, Takahisa Ikeue, Hiroshi Shinokubo. 5,5,15,15‐Tetraoxo‐5,15‐Dithiaporphyrin as a Highly Electron‐Deficient Porphyrinic Ligand. Chemistry – A European Journal 2019; 25 (68): 15580-15585.


Refbacks

  • There are currently no refbacks.