Open Access Open Access  Restricted Access Subscription or Fee Access

Ultrasound-Microwave Technologies as Alternative Methods for Inactivation Bacterias in Fruit Juice

Ourdia Nouara Kernou, Amine Belbahi, Ghania Kaanin-Boudraa, Khadidja Adel, Pr. Khodir Madani

Abstract


In the food industry, it is common practice to resort to methods that require maintaining high temperatures for just a limited amount of time in order to increase the product's quality while simultaneously lowering its risk of contamination. They provide a contribution toward the reduction of the potentially catastrophic impacts of heat deterioration. In fact, the undulating technologies are being employed for this purpose in increasing amounts; by using microwave heating, which is both speedy and efficient, the amount of time that is required to attain the necessary processing temperature may be greatly reduced. In addition to this, the impact that ultrasound has on microorganisms may also play a role in the achievement of a successful outcome during an operation. A significant advantage of using this treatment approach is the sanitization of fruit juice via microwave and ultrasonic therapy. In fact, when the microbiological activity of a number of different fruit juices is tracked over a considerable amount of time, an increased level of stability and a decreased rate of degradation are seen. In recent years, there has been a growth in the overall number of articles that are published in this sector. In this short study, sonication, microwaves, and a combination of the two are compared for their ability to kill the germs that cause juices and drinks to go bad


Full Text:

PDF

References


Veillet, S.; Tomao, V.; Chemat, F. Ultrasound assisted maceration: An original procedure for direct aromatisation of olive oil with basil. Food Chemistry 2010, 123, 905–911.

Mohideen, F.W.; Solval, K.M.; Li, J.; Zhang, J.; Chouljenko, A.; Chotiko, A.; Prudente, A.D.; Bankston, J.D.; Sathivel, S. Effect of continuous ultra-sonication on microbial counts and physico-chemical properties of blueberry (Vaccinium corymbosum) juice. LWT-Food Science Technology 2015, 60, 563-570.

Tiwari, B.; Muthukumarappan, K.; O’donnell, C.; Cullen, P. Effects of sonication on the kinetics of orange juice quality parameters. Journal of Agricultural Food Chemistry 2008, 56, 2423-2428.

Ferrario, M.; Alzamora, S.M.; Guerrero, S. Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiology 2015, 46, 635-642.

Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. Food research international 2013, 52, 243–261.

Benlloch-Tinoco, M.; Pina-Pérez, M.C.; Martínez-Navarrete, N.; Rodrigo, D. Listeria monocytogenes inactivation kinetics under microwave and conventional thermal processing in a kiwifruit puree. Innovative Food Science Emerging Technologies 2014, 22, 131–136.

Di Rosa, A.R.; Bressan, F.; Leone, F.; Falqui, L.; Chiofalo, V. Radio frequency heating on food of animal origin: A review. European Food Research Technology 2019, 245, 1787–1797.

Woo, I.-S.; Rhee, I.-K.; Park, H.-D. Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Applied Environmental Microbiology 2000, 66, 2243–2247.

Hashemi, S.M.B.; Jafarpour, D. Ultrasound and malic acid treatment of sweet lemon juice: Microbial inactivation and quality changes. Journal of Food Processing Preservation 2020, 44, e14866.

Piyasena, P.; Mohareb, E.; McKellar, R. Inactivation of microbes using ultrasound: a review. International journal of food microbiology 2003, 87, 207–216.

Yang, F.-Y.; Lin, Y.-S.; Kang, K.-H.; Chao, T.-K. Reversible blood–brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation. Journal of controlled release 2011, 150, 111–116.

Dolas, R.; Saravanan, C.; Kaur, B.P. Emergence and era of ultrasonic’s in fruit juice preservation: A review. Ultrasonics Sonochemistry 2019, 58, 104609.

Lv, R.; Zou, M.; Chen, W.; Zhou, J.; Ding, T.; Ye, X.; Liu, D. Ultrasound: Enhance the detachment of exosporium and decrease the hydrophobicity of Bacillus cereus spores. LWT 2019, 116, 108473.

Mason, T.; Lorimer, J.P. Applied sonochemistry: the uses of power ultrasound in chemistry and processing; Wiley-Vch Weinheim: 2002; Volume 10.

Mahvi, A.; Maleki, A.; Rezaei, R.; Safari, M. Reduction of humic substances in water by application of ultrasound waves and ultraviolet irradiation. 2009.

Sala, F.; Burgos, J.; Condon, S.; Lopez, P.; Raso, J. Effect of heat and ultrasound on microorganisms and enzymes. In New methods of food preservation; Springer: 1995; pp. 176–204.

Pagan, R.; Manas, P.; Alvarez, I.; Condon, S. Resistance ofListeria monocytogenesto ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiology 1999, 16, 139–148.

Patil, S.; Bourke, P.; Kelly, B.; Frías, J.M.; Cullen, P.J. The effects of acid adaptation on Escherichia coli inactivation using power ultrasound. Innovative Food Science Emerging Technologies 2009, 10, 486–490.

Wrigley, D.M.; Llorca, N.G. Decrease of Salmonella typhimurium in skim milk and egg by heat and ultrasonic wave treatment. Journal of Food Protection 1992, 55, 678–680.

Banik, S.; Bandyopadhyay, S.; Ganguly, S.; Dan, D. Effect of microwave irradiated Methanosarcina barkeri DSM-804 on biomethanation. Bioresource technology 2006, 97, 819–823.

Rougier, C. Etude des interactions entre la bactérie" Escherichia coli" et les micro-ondes appliquées en mode discontinu dans des conditions faiblement thermiques. Limoges, 2003.

Heddleson, R.A.; Doores, S. Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens–a review. Journal of Food Protection 1994, 57, 1025–1037.

Dholiya, K.; Patel, D.; Kothari, V. Effect of low power microwave on microbial growth, enzyme activity, and aflatoxin production. Research in Biotechnology 2012, 3.

Eskicioglu, C.; Terzian, N.; Kennedy, K.J.; Droste, R.L.; Hamoda, M. Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Research 2007, 41, 2457–2466.

Duhan, S.; Kar, A.; Nain, L.; Patel, A.S.; Dash, S.K. Development of continuous flow microwave and hot water bath system for destruction of spoilage microorganisms in food. 2017.

Kubo, M.T.; Siguemoto, E.S.; Funcia, E.S.; Augusto, P.E.; Curet, S.; Boillereaux, L.; Sastry, S.K.; Gut, J.A. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. Current Opinion in Food Science 2020, 35, 36-48.

Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. Ultrasonics in food processing–Food quality assurance and food safety. Trends in Food Science Technology 2012, 26, 88–98.

Salazar-González, C.; Martín-González, S.; Fernanda, M.; López-Malo, A.; Sosa-Morales, M.E. Recent studies related to microwave processing of fluid foods. Food Bioprocess Technology 2012, 5, 31–46.

Tajchakavit, S.; Ramaswamy, H.; Fustier, P. Enhanced destruction of spoilage microorganisms in apple juice during continuous flow microwave heating. Food Research International 1998, 31, 713–722.

Canumir, J.A.; Celis, J.E.; de Bruijn, J.; Vidal, L.V. Pasteurisation of apple juice by using microwaves. LWT-Food Science Technology 2002, 35, 389–392.

Mendes-Oliveira, G.; Deering, A.J.; San Martin-Gonzalez, M.F.; Campanella, O.H. Microwave pasteurization of apple juice: Modeling the inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium at 80–90 C. Food Microbiology 2020, 87, 103382.

Hosseinzadeh Samani, B.; Khoshtaghaza, M.; Minaee, S. Modeling the simultaneous effects of microwave and ultrasound treatments on sour cherry juice using response surface methodology. 2018.

Kernou, O.N.; Belbahi, A.; Amir, A.; Bedjaoui, K.; Kerdouche, K.; Dairi, S.; Aoun, O.; Madani, K. Effect of sonication on microwave inactivation of Escherichia coli in an orange juice beverage. Journal of Food Process Engineering 2021, 44, e13664.

Wang, J.; Zhao, G.; Liao, X.; Hu, X. Effects of microwave and ultrasonic wave treatment on inactivation of Alicyclobacillus. International journal of food science technology 2010, 45, 459–465.

Zia, S.; Khan, M.R.; Zeng, X.A.; Shabbir, M.A.; Aadil, R.M. Combined effect of microwave and ultrasonication treatments on the quality and stability of sugarcane juice during cold storage. International Journal of Food Science Technology 2019, 54, 2563–2569.

Pérez-Grijalva, B.; Herrera-Sotero, M.; Mora-Escobedo, R.; Zebadúa-García, J.C.; Silva-Hernández, E.; Oliart-Ros, R.; Pérez-Cruz, C.; Guzmán-Gerónimo, R. Effect of microwaves and ultrasound on bioactive compounds and microbiological quality of blackberry juice. LWT 2018, 87, 47–53.

Dreyfuss, M.; Chipley, J. Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus. Applied environmental microbiology 1980, 39, 13–16.

FUJIKAWA, H. Kinetic analysis of microbial inactivation by microwave irradiation based on temperature history. Biocontrol Science 1999, 4, 27–29.

Welt, B.; Tong, C.; Rossen, J.; Lund, D. Effect of microwave radiation on inactivation of Clostridium sporogenes (PA 3679) spores. Applied nvironmental Microbiolog 1994, 60, 482–488.

Atmaca, S.; Akdag, Z.; Dasdag, S.; Celik, S. Effect of microwaves on survival of some bacterial strains. Acta microbiologica et immunologica Hungarica 1996, 43, 371–378.

Kozempel, M.; Cook, R.D.; Scullen, O.J.; Annous, B.A. Development of a process for detecting nonthermal effects of microwave energy on microorganisms at low temperature. 2000.

Shamis, Y.; Taube, A.; Shramkov, Y.; Mitik-Dineva, N.; Vu, B.; Ivanova, E.P. Development of a microwave treatment technique for bacterial decontamination of raw meat. International Journal of Food Engineering 2008, 4.

Hamoud-Agha, M.M.; Curet, S.; Simonin, H.; Boillereaux, L. Microwave inactivation of Escherichia coli K12 CIP 54.117 in a gel medium: Experimental and numerical study. Journal of Food Engineering 2013, 116, 315–323.

Siguemoto, É.S.; Gut, J.A.W.; Martinez, A.; Rodrigo, D. Inactivation kinetics of Escherichia coli O157: H7 and Listeria monocytogenes in apple juice by microwave and conventional thermal processing. Innovative Food Science Emerging Technologies 2018, 45, 84–91.

Cruz-Cansino, N.d.S.; Reyes-Hernández, I.; Delgado-Olivares, L.; Jaramillo-Bustos, D.P.; Ariza-Ortega, J.A.; Ramírez-Moreno, E. Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage. brazilian journal of microbiology 2016, 47, 431–437.

Silva, F.V. High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control 2016, 62, 365–372.

Pala, Ç.U.; Zorba, N.N.D.; Özcan, G. Microbial inactivation and physicochemical properties of ultrasound processed pomegranate juice. Journal of Food Protection 2015, 78, 531–539.

Tahi, A.A.; Sousa, S.; Madani, K.; Silva, C.L.; Miller, F.A. Ultrasound and heat treatment effects on Staphylococcus aureus cell viability in orange juice. Ultrasonics Sonochemistry 2021, 78, 105743.

Starek, A.; Kobus, Z.; Sagan, A.; Chudzik, B.; Pawłat, J.; Kwiatkowski, M.; Terebun, P.; Andrejko, D. Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice. Scientific Reports 2021, 11, 1–12.

Wahia, H.; Zhou, C.; Fakayode, O.A.; Amanor-Atiemoh, R.; Zhang, L.; Mustapha, A.T.; Zhang, J.; Xu, B.; Zhang, R.; Ma, H. Quality attributes optimization of orange juice subjected to multi-frequency thermosonication: Alicyclobacillus acidoterrestris spore inactivation and applied spectroscopy ROS characterization. Food Chemistry 2021, 361, 130108.


Refbacks

  • There are currently no refbacks.