Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of polymer architecture on the gas separation performance of PIM-1 membranes

Koteswara Rao Medidhi, Venkat Padmanabhan

Abstract


Molecular simulations are used to demonstrate the effects of chain architectureson the gas separation performance of PIM-1 membranes. Four different architectures(linear, H-shape, star, and dendritic) were considered to investigate the transport propertiesof four industrially relevant gases (CO2, CH4, O2, and N2). The results obtainedfor the linear PIM-1 agree well with the available experimental data. The simulationsindicate that it is indeed possible to tune the free volume morphology of PIM-1 membranesby choosing the appropriate architecture. An inverse relationship between thedensity and fractional free volume was observed as expected, with the highest densityand lowest FFV obtained for the dendritic PIM-1. While the linear PIM-1 showedlarger pores that enhanced the diffusivity of all small gases, the branched architectures(H-shape, star and dendritic) showed smaller pores interconnected by narrow channels,creating a bottle neck morphology, that resulted in an enhanced sieving ability of themembrane. The observed modifications resulted in significant differences in the diffusivityof N2 while having a moderate effect on the diffusivities of other gases, pushing the performance of CO2/N2 andO2/N2 separation beyond the Robeson’s 2008 upperbound.

keywords: PIM-1, chain architecture, gas separation, gas transport, molecular simulations


Full Text:

PDF

References


(1) Dong, G.; Li, H.; Chen, V. Challenges and opportunities for mixed-matrix membranesfor gas separation. J. Mater. Chem. A 2013, 1, 4610–4630.

(2) Wang, Z.; Wang, D.; Jin, J. Microporous Polyimides with Rationally Designed ChainStructure Achieving High Performance for Gas Separation. Macromolecules 2014, 47,7477–7483.

(3) Khan, A. L.; Klaysom, C.; Gahlaut, A.; Khan, A. U.; Vankelecom, I. F. Mixed matrixmembranes comprising of Matrimid and –SO3H functionalized mesoporous MCM-41for gas separation. Journal of Membrane Science 2013, 447, 73 – 79.

(4) Robeson, L. M.; Smith, Z. P.; Freeman, B. D.; Paul, D. R. Contributions of diffusionand solubility selectivity to the upper bound analysis for glassy gas separationmembranes.Journal of Membrane Science 2014, 453, 71–83.

(5) Yi, S.; Ghanem, B.; Liu, Y.; Pinnau, I.; Koros, W. J. Ultraselective glassy polymermembranes with unprecedented performance for energy-efficient sour gas separation.Science Advances 2019, 5.

(6) Syrtsova, D.; Kharitonov, A.; Teplyakov, V.; Koops, G.-H. Improving gas separationproperties of polymeric membranes based on glassy polymers by gas phase fluorination.Desalination 2004, 163, 273 – 279.

(7) Ahmad, N. N. R.; Mukhtar, H.; Mohshim, D.; Nasir, R.; Man, Z. Surface modificationin inorganic filler of mixed matrix membrane for enhancing the gas separationperformance. Reviews in Chemical Engineering 2016, 32.

(8) Khulbe, K. C.; Feng, C. Y.; Matsuura, T. Surface Modification of Synthetic PolymericMembranes for Filtration and Gas Separation. Recent Patents on Chemical Engineering2010, 3, 1–16.

(9) Ghalei, B.; Isfahani, A. P.; Nilouyal, S.; Vakili, E.; Salooki, M. K. Effect of PolyvinylAlcohol Modified Silica Particles on the Physical and Gas Separation Properties ofthe Polyurethane Mixed Matrix Membranes. Silicon 2018.

(10) Farnam, M.; Mukhtar, H.; Shariff, A. M. An investigation of blended polymeric membranesand their gas separation performance. RSC Advances 2016, 6, 102671–102679.

(11) Mukhtar, H.; Mannan, H. A.; Minh, D.; Nasir, R.; Moshshim, D. F.; Murugesan, T.Polymer blend membranes for CO2separation from natural gas. IOP Conference Series:Earth and Environmental Science 2016, 36, 012016.

(12) Holt, C. J.; Vizuet, J. P.; Musselman, I. H.; Jr., K. J. B.; Ferraris, J. P. Membranesfor Gas Separations; World Scientific Series in Membrane Science and Technology:Biological and Biomimetic Applications, Energy and the Environment, 2017; ChapterChapter 5, pp 195–242.

(13) Moon, J. D.; Bridge, A. T.; D’Ambra, C.; Freeman, B. D.; Paul, D. R. Gas separationproperties of polybenzimidazole/thermally-rearranged polymer blends. Journalof Membrane Science 2019, 582, 182 – 193.

(14) Song, Q.; Cao, S.; Pritchard, R. H.; Ghalei, B.; Al-Muhtaseb, S. A.; Terentjev, E. M.;Cheetham, A. K.; Sivaniah, E. Controlled thermal oxidative crosslinking of polymersof intrinsic microporosity towards tunable molecular sieve membranes. Nature Communications2014, 5, 4813.

(15) Kim, S.; Hou, J.; Wang, Y.; Ou, R.; Simon, G. P.; Seong, J. G.; Lee, Y. M.;Wang, H. Highly permeable thermally rearranged polymer composite membranes witha graphene oxide scaffold for gas separation. J. Mater. Chem. A 2018, 6, 7668–7674.

(16) Tena, A.; Rangou, S.; Shishatskiy, S.; Filiz, V.; Abetz, V. Claisen thermally rearranged(CTR) polymers. Science Advances 2016, 2.

(17) Langsam, M.; Anand, M.; Karwacki, E. Substituted propyne polymers: I. Chemicalsurface modification of poly[1-(trimethylsilyl] propyne] for gas separation membranes.Gas Separation & Purification 1988, 2, 162 – 170.

(18) Baker, R. W.; Low, B. T. Gas Separation Membrane Materials: A Perspective. Macromolecules2014, 47, 6999–7013.

(19) Guiver, M. D.; Robertson, G. P.; Foley, S. Chemical Modification of Polysulfones II:An Efficient Method for Introducing Primary Amine Groups onto the Aromatic Chain.Macromolecules 1995, 28, 7612–7621.

(20) Robeson, L.; Burgoyne, W.; Langsam, M.; Savoca, A.; Tien, C. High performancepolymers for membrane separation. Polymer 1994, 35, 4970 – 4978.

(21) Robeson, L.; Freeman, B.; Paul, D.; Rowe, B. An empirical correlation of gas permeabilityand permselectivity in polymers and its theoretical basis. Journal of MembraneScience 2009, 341, 178 – 185.

(22) Robeson, L. M. Correlation of separation factor versus permeability for polymericmembranes. Journal of Membrane Science 1991, 62, 165 – 185.

(23) Robeson, L. M. The upper bound revisited. Journal of Membrane Science 2008, 320,390 – 400.

(24) Freeman, B. D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric GasSeparation Membranes. Macromolecules 1999, 32, 375–380.

(25) Budd, P. M.; McKeown, N. B. Highly permeable polymers for gas separation membranes. Polymer Chemistry 2010, 1, 63–68.

(26) McKeown, N. B. Polymers of Intrinsic Microporosity. ISRN Materials Science 2012,2012, 513986.

(27) Kinoshita, Y.; Wakimoto, K.; Gibbons, A. H.; Isfahani, A. P.; Kusuda, H.; Sivaniah,E.; Ghalei, B. Enhanced PIM-1 membrane gas separation selectivity throughefficient dispersion of functionalized POSS fillers. Journal of Membrane Science 2017,539, 178 – 186.

(28) Ghalei, B.; Sakurai, K.; Kinoshita, Y.; Wakimoto, K.; Pournaghshband, A.; Song, Q.;Doitomi, K.; Furukawa, S.; Hirao, H.; Kusuda, H.; Kitagawa, S.; Sivaniah, E. Enhancedselectivity in mixed matrix membranes for CO2 capture through efficient dispersionof amine-functionalized MOF nanoparticles. Nature Energy 2017, 2, 17086.

(29) Esposito, E.; Mazzei, I.; Monteleone, M.; Fuoco, A.; Carta, M.; McKeown, N. B.;Malpass-Evans, R.; Jansen, J. C. Highly Permeable Matrimid®/PIM-EA(H2)-TBBlend Membrane for Gas Separation. Polymers 2019, 11.

(30) Wu, X. M.; Zhang, Q. G.; Lin, P. J.; Qu, Y.; Zhu, A. M.; Liu, Q. L. Towards enhancedCO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol. Journalof Membrane Science 2015, 493, 147 – 155.

(31) Robeson, L. M.; Dose, M. E.; Freeman, B. D.; Paul, D. R. Analysis of the transportproperties of thermally rearranged (TR) polymers and polymers of intrinsic microporosity(PIM) relative to upper bound performance. Journal of Membrane Science2017, 525, 18 – 24.

(32) Kushwaha, A.; Dose, M. E.; Smith, Z. P.; Luo, S.; Freeman, B. D.; Guo, R. Preparationand properties of polybenzoxazole-based gas separation membranes: A comparativestudy between thermal rearrangement (TR) of poly(hydroxyimide) and thermal cyclodehydrationof poly(hydroxyamide). Polymer 2015, 78, 81 – 93.

(33) Jo, H. J.; Soo, C. Y.; Dong, G.; Do, Y. S.; Wang, H. H.; Lee, M. J.; Quay, J. R.;Murphy, M. K.; Lee, Y. M. Thermally Rearranged Poly(benzoxazole-co-imide) Membraneswith Superior Mechanical Strength for Gas Separation Obtained by TuningChain Rigidity. Macromolecules 2015, 48, 2194–2202.

(34) Hao, L.; Liao, K.-S.; Chung, T.-S. Photo-oxidative PIM-1 based mixed matrix membraneswith superior gas separation performance. J. Mater. Chem. A 2015, 3, 17273–17281.

(35) Liu, J.; Xiao, Y.; Chung, T.-S. Flexible thermally treated 3D PIM-CD molecularsieve membranes exceeding the upper bound line for propylene/propane separation.J. Mater. Chem. A 2017, 5, 4583–4595.

(36) Khan, M. M.; Bengtson, G.; Shishatskiy, S.; Gacal, B. N.; Rahman, M. M.; Neumann,S.; Filiz, V.; Abetz, V. Cross-linking of Polymer of Intrinsic Microporosity(PIM-1) via nitrene reaction and its effect on gas transport property. European PolymerJournal 2013, 49, 4157 – 4166.

(37) Li, F. Y.; Xiao, Y.; Chung, T.-S.; Kawi, S. High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development.Macromolecules 2012, 45, 1427–1437.

(38) Yong, W. F.; Lee, Z. K.; Chung, T.-S.; Weber, M.; Staudt, C.; Maletzko, C. Blends ofa Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfonefor Gas Separation. ChemSusChem 2016, 9, 1953–1962.

(39) Luo, S.; Liu, Q.; Zhang, B.; Wiegand, J. R.; Freeman, B. D.; Guo, R. Pentiptycenebasedpolyimides with hierarchically controlled molecular cavity architecture for efficientmembrane gas separation. Journal of Membrane Science 2015, 480, 20 – 30.

(40) Wiegand, J. R.; Smith, Z. P.; Liu, Q.; Patterson, C. T.; Freeman, B. D.; Guo, R. Synthesisand characterization of triptycene-based polyimides with tunable high fractionalfree volume for gas separation membranes. J. Mater. Chem. A 2014, 2, 13309–13320.

(41) Madkour, T. M.; Mark, J. E. Molecular modeling investigation of the fundamentalstructural parameters of polymers of intrinsic microporosity for the design oftailor-made ultra-permeable and highly selective gas separation membranes. Journalof Membrane Science 2013, 431, 37 – 46.

(42) Hashem, M.; Grazia Bezzu, C.; Kariuki, B. M.; McKeown, N. B. Enhancing the rigidity of a network polymer of intrinsic microporosity by the combined use of phthalocyanineand triptycene components. Polym. Chem. 2011, 2, 2190–2192.

(43) Robeson, L. M. Polymer Blends in Membrane Transport Processes. Industrial & EngineeringChemistry Research 2010, 49, 11859–11865.

(44) Mannan, H. A.; Mukhtar, H.; Murugesan, T.; Nasir, R.; Mohshim, D. F.; Mushtaq, A.Recent Applications of Polymer Blends in Gas Separation Membranes. Chemical Engineering& Technology 2013, 36, 1838–1846.

(45) Yong, W.; Li, F.; Xiao, Y.; Li, P.; Pramoda, K.; Tong, Y.; Chung, T. Molecular engineeringof PIM-1/Matrimid blend membranes for gas separation. Journal of MembraneScience 2012, 407-408, 47 – 57.

(46) Bilchak, C. R.; Buenning, E.; Asai, M.; Zhang, K.; Durning, C. J.; Kumar, S. K.;Huang, Y.; Benicewicz, B. C.; Gidley, D. W.; Cheng, S.; Sokolov, A. P.; Minelli, M.;Doghieri, F. Polymer-Grafted Nanoparticle Membranes with Controllable Free Volume.Macromolecules 2017, 50, 7111–7120.

(47) Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.; Baker, R. W.; Freeman, B. D.50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas andVapor Separation: A Review and Prospective Opportunities. Macromolecules 2017,50, 7809–7843.

(48) Chung, T.-S.; Jiang, L. Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes(MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation.Progress in Polymer Science 2007, 32, 483 – 507.

(49) Etxeberria-Benavides, M.; David, O.; Johnson, T.; Łozinska, M. M.; Orsi, A.;Wright, P. A.; Mastel, S.; Hillenbrand, R.; Kapteijn, F.; Gascon, J. High performancemixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAMpolymer.Journal of Membrane Science 2018, 550, 198 – 207.

(50) Lin, R.; Villacorta Hernandez, B.; Ge, L.; Zhu, Z. Metal organic framework basedmixed matrix membranes: an overview on filler/polymer interfaces. J. Mater. Chem.A 2018, 6, 293–312.

(51) Khan, M. M.; Filiz, V.; Bengtson, G.; Shishatskiy, S.; Rahman, M.; Abetz, V. Functionalizedcarbon nanotubes mixed matrix membranes of polymers of intrinsic microporosityfor gas separation. Nanoscale Research Letters 2012, 7, 504.

(52) Golzar, K.; Modarress, H.; Amjad-Iranagh, S. Effect of pristine and functionalizedsingle- and multi-walled carbon nanotubes on CO2 separation of mixed matrix membranesbased on polymers of intrinsic microporosity (PIM-1): a molecular dynamicssimulation study. Journal of Molecular Modeling 2017, 23, 266.

(53) Ahn, J.; Chung, W.-J.; Pinnau, I.; Song, J.; Du, N.; Robertson, G. P.; Guiver, M. D.Gas transport behavior of mixed-matrix membranes composed of silica nanoparticlesin a polymer of intrinsic microporosity (PIM-1). Journal of Membrane Science 2010,346, 280 – 287.

(54) Bhavsar, R. S.; Mitra, T.; Adams, D. J.; Cooper, A. I.; Budd, P. M. UltrahighpermeancePIM-1 based thin film nanocomposite membranes on PAN supports forCO2 separation. Journal of Membrane Science 2018, 564, 878 – 886.

(55) Rukmani, S. J.; Liyana-Arachchi, T. P.; Hart, K. E.; Colina, C. M. Ionic-Functionalized Polymers of Intrinsic Microporosity for Gas Separation Applications.Langmuir 2018, 34, 3949–3960.

(56) Scovazzo, P. Determination of the upper limits, benchmarks, and critical propertiesfor gas separations using stabilized room temperature ionic liquid membranes (SILMs)for the purpose of guiding future research. Journal of Membrane Science 2009, 343,199 – 211.

(57) Scovazzo, P.; Kieft, J.; Finan, D. A.; Koval, C.; DuBois, D.; Noble, R. Gas separationsusing non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes.Journal of Membrane Science 2004, 238, 57 – 63.

(58) Iarikov, D. D.; Hacarlioglu, P.; Oyama, S. T. Supported room temperature ionic liquidmembranes for CO2/CH4 separation. Chemical Engineering Journal 2011, 166, 401– 406. Jansen, J. C.; Friess, K.; Clarizia, G.; Schauer, J.; Izák, P. High Ionic Liquid ContentPolymeric Gel Membranes: Preparation and Performance. Macromolecules 2011, 44,39–45.

(59) Gu, Y.; Lodge, T. P. Synthesis and Gas Separation Performance of Triblock CopolymerIon Gels with a Polymerized Ionic Liquid Mid-Block. Macromolecules 2011, 44, 1732–1736.

(60) McKeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall,C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D. Polymers of Intrinsic Microporosity(PIMs): Bridging the Void between Microporous and Polymeric Materials.Chemistry A European Journal 2005, 11, 2610–2620.

(61) Bezzu, C. G.; Carta, M.; Tonkins, A.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.;McKeown, N. B. A Spirobifluorene Based Polymer of Intrinsic Microporosity withImproved Performance for Gas Separation. Advanced Materials 2012, 24, 5930–5933.

(62) Budd, P. M.; Msayib, K. J.; Tattershall, C. E.; Ghanem, B. S.; Reynolds, K. J.;McKeown, N. B.; Fritsch, D. Gas separation membranes from polymers of intrinsicmicroporosity. Journal of Membrane Science 2005, 251, 263 – 269.

(63) Bernardo, P.; Bazzarelli, F.; Tasselli, F.; Clarizia, G.; Mason, C.; Maynard-Atem, L.;Budd, P.; Lanc, M.; Pilnácek, K.; Vopicka, O.; Friess, K.; Fritsch, D.; Yampolskii, Y.; Shantarovich, V.; Jansen, J. Effect of physical aging on the gas transport and sorptionin PIM-1 membranes. Polymer 2017, 113, 283 – 294.

(64) Tiwari, R. R.; Jin, J.; Freeman, B.; Paul, D. Physical aging, CO2 sorption and plasticizationin thin films of polymer with intrinsic microporosity (PIM-1). Journal ofMembrane Science 2017, 537, 362 – 371.

(65) McDermott, A. G.; Budd, P. M.; McKeown, N. B.; Colina, C. M.; Runt, J. Physicalaging of polymers of intrinsic microporosity: a SAXS/WAXS study. J. Mater. Chem.A 2014, 2, 11742–11752.

(66) Harms, S.; Rätzke, K.; Faupel, F.; Chaukura, N.; Budd, P. M.; Egger, W.; Ravelli, L.Aging and Free Volume in a Polymer of Intrinsic Microporosity (PIM-1). The Journalof Adhesion 2012, 88, 608–619.

(67) Fried, J.; Sadat-Akhavi, M.; Mark, J. Molecular simulation of gas permeability:poly(2,6-dimethyl-1,4-phenylene oxide). Journal of Membrane Science 1998, 149, 115– 126.

(68) Fang, W.; Zhang, L.; Jiang, J. Polymers of intrinsic microporosity for gas permeation:a molecular simulation study. Molecular Simulation 2010, 36, 992–1003.

(69) Heuchel, M.; Hofmann, D.; Pullumbi, P. Molecular Modeling of Small-Molecule Permeationin Polyimides and Its Correlation to Free-Volume Distributions.Macromolecules2004, 37, 201–214.

(70) Heuchel, M.; Böhning, M.; Hölck, O.; Siegert, M. R.; Hofmann, D. Atomistic packingmodels for experimentally investigated swelling states induced by CO2 in glassy polysulfoneand poly(ether sulfone). Journal of Polymer Science Part B: Polymer Physics2006, 44, 1874–1897.

(71) Karayiannis, N. C.; Mavrantzas, V. G.; Theodorou, D. N. Detailed Atomistic Simulationof the Segmental Dynamics and Barrier Properties of Amorphous Poly(ethyleneterephthalate) and Poly(ethylene isophthalate). Macromolecules 2004, 37, 2978–2995.

(72) Spyriouni, T.; Boulougouris, G. C.; Theodorou, D. N. Prediction of Sorption of CO2in Glassy Atactic Polystyrene at Elevated Pressures Through a New ComputationalScheme. Macromolecules 2009, 42, 1759–1769.

(73) Neyertz, S.; Douanne, A.; Brown, D. Effect of Interfacial Structure on PermeationProperties of Glassy Polymers. Macromolecules 2005, 38, 10286–10298.

(74) Neyertz, S.; Brown, D. Molecular Dynamics Simulations of Oxygen Transport througha Fully Atomistic Polyimide Membrane. Macromolecules 2008, 41, 2711–2721.

(75) Ricci, E.; Angelis, M. G. D. Modelling Mixed-Gas Sorption in Glassy Polymers forCO2 Removal: A Sensitivity Analysis of the Dual Mode Sorption Model. Membranes2019, 9, 8.

(76) Hart, K. E.; Colina, C. M. Estimating gas permeability and permselectivity of microporouspolymers. Journal of Membrane Science 2014, 468, 259 – 268.

(77) Abbott, L. J.; Hart, K. E.; Colina, C. M. Polymatic: a generalized simulated polymerizationalgorithm for amorphous polymers. Theoretical Chemistry Accounts 2013,132, 1334.

(78) Minelli, M.; Friess, K.; Vopicka, O.; Angelis, M. G. D. Modeling gas and vapor sorptionin a polymer of intrinsic microporosity (PIM-1). Fluid Phase Equilibria 2013, 347, 35– 44.

(79) Evans, J. D.; Huang, D. M.; Hill, M. R.; Sumby, C. J.; Thornton, A. W.; Doonan, C. J.Feasibility of Mixed Matrix Membrane Gas Separations Employing Porous OrganicCages. The Journal of Physical Chemistry C 2014, 118, 1523–1529.

(80) Rose, I.; Bezzu et al., C. G. Polymer ultrapermeability from the inefficient packing of2D chains. Nature Materials 2017, 16, 932.

(81) Zhang, J.; Kang, H.; Martin, J.; Zhang, S.; Thomas, S.; Merkel, T. C.; Jin, J. Theenhancement of chain rigidity and gas transport performance of polymers of intrinsicmicroporosity via intramolecular locking of the spiro-carbon. Chem. Commun. 2016,52, 6553–6556.

(82) Abou-Hussein, R.; Wu, S.; Zhang, L.; Mark, J. E. Effects of Some Structural Featuresof Poly(dimethylsiloxane) on its Unusually High Gas Permeabilities. Journal ofInorganic and Organometallic Polymers and Materials 2008, 18, 100–103.

(83) Kadam, P. G.; Mhaske, S. Synthesis of Star-Shaped Polymers. Designed Monomersand Polymers 2011, 14, 515–540.

(84) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison,G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysisplatform. Journal of Cheminformatics 2012, 4, 17.

(85) L., M.; R., A.; G., B. E.; M., M. J. PACKMOL: A package for building initial configurationsfor molecular dynamics simulations. Journal of Computational Chemistry2009, 30, 2157–2164.

(86) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of theOPLS All-Atom Force Field on Conformational Energetics and Properties of OrganicLiquids. Journal of the American Chemical Society 1996, 118, 11225–11236.

(87) Harder, E. et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like SmallMolecules and Proteins. Journal of Chemical Theory and Computation 2016, 12, 281–296.

(88) Maestro, Schrodinger Release 2018-2: Schrodinger, LLC, New York, NY. 2018.

(89) Bowers, K. J.; Chow, D. E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregersen, B. A.;Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, F. D. Scalable algorithms formolecular dynamics simulations on commodity clusters. SC 2006 conference, proceedingsof the ACM/IEEE 2006, 43–43.

(90) Storer, J. W.; Giesen, D. J.; Cramer, C. J.; Truhlar, D. G. Class IV charge models:A new semiempirical approach in quantum chemistry. Journal of Computer-AidedMolecular Design 1995, 9, 87–110.

(91) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. JournalComputational Physics 1995, 117, 1–19.

(92) Hofmann, D.; Heuchel, M.; Yampolskii, Y.; Khotimskii, V.; Shantarovich, V. FreeVolume Distributions in Ultrahigh and Lower Free Volume Polymers Comparison betweenMolecular Modeling and Positron Lifetime Studies. Macromolecules 2002, 35,2129–2140.

(93) Hofmann, D.; Entrialgo-Castano, M.; Lerbret, A.; Heuchel, M.; Yampolskii, Y. MolecularModeling Investigation of Free Volume Distributions in Stiff Chain Polymers withConventional and Ultrahigh Free Volume Comparison between Molecular Modelingand Positron Lifetime Studies. Macromolecules 2003, 36, 8528–8538.

(94) Larsen, G. S.; Hart, K. E.; Colina, C. M. Predictive simulations of the structural andadsorptive properties for PIM-1 variations. Molecular Simulation 2014, 40, 599–609.

(95) Willmore, F. T.; Wang, X.; Sanchez, I. C. Free volume properties of model fluidsand polymers: Shape and connectivity. Journal of Polymer Science Part B: PolymerPhysics 2006, 44, 1385–1393.

(96) Volkov, V. V.; Yampolskii, Y. P. Structural Properties of Porous Materials and PowdersUsed in Different Fields of Science and Technology; 2014; pp 135–158.

(97) Yushkin, A.; Grekhov, A.; Matson, S.; Bermeshev, M.; Khotimsky, V.; Finkelstein, E.;Budd, P. M.; Volkov, V.; Vlugt, T. J.; Volkov, A. Study of glassy polymers fractionalaccessible volume (FAV) by extended method of hydrostatic weighing: Effect of porousstructure on liquid transport. Reactive and Functional Polymers 2015, 86, 269 – 281.

(98) Padmanabhan, V. Polyamides with phosphaphenanthrene skeleton and substitutedtriphenylamine for gas separation membranes. Journal of Membrane Science 2018,566, 129 – 139.

(99) Larsen, G. S.; Lin, P.; Siperstein, F. R.; Colina, C. M. Methane adsorption in PIM-1.Adsorption 2011, 17, 21–26.

(100) Larsen, G. S.; Lin, P.; Hart, K. E.; Colina, C. M. Molecular Simulations of PIM-1-likePolymers of Intrinsic Microporosity. Macromolecules 2011, 44, 6944–6951.

(101) Tocci, E. et al. Molecular Modeling and Gas Permeation Properties of a Polymerof Intrinsic Microporosity Composed of Ethanoanthracene and Troger’s Base Units.Macromolecules 2014, 47, 7900–7916.

(102) Voorintholt, R.; T Kosters, M.; Vegter, G.; Vriend, G.; Hol, W. A very fast programfor visualizing protein surfaces, channels and cavities. Journal of molecular graphics1990, 7, 243–5.

(103) Bera, D.; Padmanabhan, V.; Banerjee, S. Highly Gas Permeable Polyamides Basedon Substituted Triphenylamine. Macromolecules 2015, 48, 4541–4554.

(104) Bisoi, S.; Mandal, A. K.; Singh, A.; Padmanabhan, V.; Banerjee, S. Soluble, opticallytransparent polyamides with a phosphaphenanthrene skeleton: synthesis, characterization,gas permeation and molecular dynamics simulations. Polym. Chem. 2017, 8,4220–4232.

(105) Hao, L.; Li, P.; Chung, T.-S. PIM-1 as an organic filler to enhance the gas separationperformance of Ultem polyetherimide. Journal of Membrane Science 2014, 453, 614–623.

(106) Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithmsand tools for high-throughput geometry-based analysis of crystalline porous materials.Microporous and Mesoporous Materials 2012, 149, 134 – 141.

(107) Mason, C. R.; Maynard-Atem, L.; Al-Harbi, N. M.; Budd, P. M.; Bernardo, P.; Bazzarelli,F.; Clarizia, G.; Jansen, J. C. Polymer of Intrinsic Microporosity IncorporatingThioamide Functionality: Preparation and Gas Transport Properties. Macromolecules2011, 44, 6471–6479.


Refbacks

  • There are currently no refbacks.