Open Access Open Access  Restricted Access Subscription or Fee Access

Design of Batch Reactors for Pulping of Plantain Pseudostem

Olalekan Michael Adeloye, Igbagara Princewill Woyinbrakemi

Abstract


Plantain pseudostem has little application in Africa and constitute major domestic waste and often problematic to manage. It however contains a high content of lignocellulose that can be used for production of pulp. With the geometric decline of feedstock for pulp production due to dwindling wood resources, plantain pseudostem becomes a ready alternative. This study developed design models for batch reactor for the plantain pulping process under isothermal, non-isothermal and adiabatic conditions respectively using the principle of conservation of mass and energy balance. The simulation of the developed design equations yielded a close convergence with the experimental model, analysis with close range absolute deviation value. The delignification of plantain pseudostem showed maximum yield of lignin product as 5.20 ml/l, 0.81 mol/l and 0.20 mol/l at reaction time of 0.173 hours, 1.11 hours and 4.52 hours for isothermal, non-isothermal and adiabatic batch reactors respectively. The study strongly recommends for investigation of plantain pulping, giving its good prospects as cheap alternative source for pulp production.

Full Text:

PDF

References


Gierer, J. (1985), Chemistry of Delignification, General Concept and Reactions during Pulping. Wood Science and Technology, 19 (4), 289-312.

Francides, G. D. S. Jr. & Maria de Lounde, A. P. S. (2020). Pulp Production from Banana Plant Stem, Musa Sp. Proceedings of Fourth International Nonwood Fibre Pulping and Paper Making Conference, Jinan, China.

Khan, M. Z. H., Sarkar, M. H. R., Al-Imam, F. I. & Malinen, R. (2013). Fibre Morphology and Pulping of Banana Pseudostem. International Journal of Fibre and Textile Research, 3 (1), 31 – 35

Cecci, R. R. R., Passos, A. A., Neto, T. C. A. & Silva, L. A. (2019), Banana Pseudostem Characterization and Comparison with Reported Data on Jute and Sisal Fibre, Springer Nature Applied Sciences, 3 (2020), 210-224

Ferdous, T., Quaiyyum, M. A., Jin, Y., Bashar, M. S., Arafat, K. M. Y. & Jahan, M. S. (2021). Pulping and Bleaching Potential of Banana Pseudostem, Banana Leaf and Banana Peduncle. Biomass Conversion and Biorefinery, 2021, 122-131

Kalyoncu., E. E. (2022). Eco Friendly Pulping of Banana Pseudostem Wastes with Potassium Based Processes. Cellulose Chemistry and Technology, 56 (1-2), 131-140

Hills, R. L. (1988). Papermaking in Britain 1488–1988: A Short History. London: Athlone Press.

Tutus, A., Ates, S. & Deniz, I. (2010). Pulp and Paper Production from Spruce Wood with Kraft and Modified Kraft Methods. African Journal of Biotechnology, 9 (11), 1648 – 1654

Halie, a., Gelebo, G. G., Tesfaye, T., Mengie, W., Mebrate, M. A., Abuhay, a. & Limeneh, D. Y. (2021). Pulp and Paper Mill Wastes: Utilization and Prospects for High Value Added Biomaterials.

Bioresources and Bioprocessing, 8 (35), 1-22

Lehr, M., Miltner, M. & Friedl, A. (2021). Removal of Wood Extracts as PulpPre-Treatment: A Technological Review. SN Applied Science, 3 (886), 1-22

Jardim, J. M., Hart, P. W., Lucia, L. A., Jameel, H. & Chang, H. (2022). The Effect of the Kraft Pulping Process, Wood Species and PH

on Lignin Recovery from Black Liquor. Fibers, 10(16), 1-12

Ogunsile, B. O., Omotoso, M. A. & Onilude, M. A. (2008). Pulp and Paper Potentials of Plantain Pseudostem. Journal of Science and Technology, 28 (3), 159-165

Igbagara, P. W. (2007). Stability Analysis of Gas – Liquid Reaction in the Slow Reaction Regime. Ph.D. Thesis, Department of Chemical/Petrochemical Engineering, River State University of

Science and Technology, Port Harcourt.

Andhika, D., Kasim, A., Asben, A. & Yusinwati, Y. (2021). Delignification of Lignocellulosic Biomass. World Journal of Advanced Research and Reviews, 12 (02), 462-469

Kohli, K., Katuwal, S., Biswar, A. & Sharma, B. K. (2020). Effective Delignification of Lignocellulosic Biomass by Microwave Assisted Deep Eutectic Solvents. Bioresources Technology, 303, 122897-122908

Tocco, D., Carucci, C., Monduzzi, M., Salis, A. & Sanjust, E. (2021). Recent Developments in the Delignification and Exploitation of Grass Lignocellulosic Biomass. ACS Sustainable Chemical Engineering, 9 (6), 2412-2432

Mikulski, D. & Klosowski, G. (2022). Delignification Efficiency of Various Types of Biomass using Microwave Assisted Hydrotropic Pre-Treatment. Scientific Report, 12 (4561), 221-232

Hassan, N. S. & Badri, K. H. (2014). Lignin Recovery from Alkaline Hydrolysis and Glycerolysis of Oil Palm Fiber. AIP Conference Proceedings, Selangor, Malaysia

Johansson, D., Johansson, M., Karltorp, K., Ljungstedt, H. & Schwabecker, J. (2015). Pathways for Increased Use and Refining of Biomass in Swedish Energy intensive Industry Changes in a SocioTechnical System, 1-147

Coulson, J. M., Richardson, J. F., Backhurst, J. R. & Harker, J. H. (1993). Leaching. In: Chemical Engineering. New York: Pergamon Press

Wakeman, R. (1994). Extraction (Liquid–Solid): Encyclopedia of Chemical Technology. New Jersey: John Wiley & Sons.

Schweitzer, P. A. (1997). Handbook of Separation Techniques for Chemical Engineers. New York: McGraw-Hill Publisher


Refbacks

  • There are currently no refbacks.