Open Access Open Access  Restricted Access Subscription or Fee Access

Chemical Synthesis and Characterization of Polyaniline for Supercapacitors Application

Mohamed Loucif Seiad, Naima Boudieb, Lila Meziane, Aissa Kherfi, Karima Kahlouche, Abdelyamine Naitbouda, Linda Loucif Seiad

Abstract


Various polyaniline (PANI) synthesis methods are reported in the literature, depending on the experimental parameters involved (T, t, doping, and mixing procedure). Herein, three chemical polymerization methods were used to synthesis PANI from aniline monomer: rapid oxidation (OR), controlled oxidation (CO), and interfacial oxidation (OI). The PANI was therefore deposited next by drop casting on a silicon (Si) substrate. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were used to examine the morphology of the polymer layer. It was shown that the nanofibers were successfully obtained only by using CO method. Both CO and IO methods produced poor PANI yields against the RO method. The XRD data supported PANI's amorphous nature. The characteristic vibration bands (C-C, C=N, and C-N+) were observed, which confirms the successful PANI polymerization.


Full Text:

PDF

References


Kurra, N.; Wang, R.; Alshareef, H.N. All conducting polymer electrodes for asymmetric solidstate supercapacitors. J. Mater. Chem. A, 2015, 3, pp. 7368–7374. DOI: http://dx.doi.org/10.1039/C5TA00829H

Dirican, M.; Yanilmaz, M.; Zhang, X. Free-standing polyaniline-porous carbon nanofiber electrodes for symmetric and asymmetric supercapacitors. RSC Adv, 2014, 4, pp. 59427–59435.

DOI: https://doi.org/10.1039/C4RA09103E

Ramya, R.; Sivasubramanian, R.; Sangaranarayanan, MV. Conducting polymers-based electrochemical supercapacitors—progress and prospects. Electrochim Acta, 2013, 101, pp. 109–

DOI: https://doi.org/10.1016/j.electacta.2012.09.116

Snook, GA.; Kao, P.; Best, AS. Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources, 2011, 196, pp. 1–12. DOI: https://doi.org/10.1016/j.jpowsour.2010.06.084

Shown, I.; Ganguly, A.; Chen, L-C.; Chen, K-H. Conducting polymer-based flexible supercapacitor. Energy Sci Eng, 2015, 3, pp. 2–26. DOI: https://doi.org/10.1002/ese3.50

Silva, C.H.; Galiote, N.A.; Huguenin, F.; Teixeira-Neto, E.; Constantino, V.R.; Temperini, M.L. Spectroscopic, morphological and electrochromic characterization of layer-by-layer hybrid films

of polyaniline and hexaniobate nanoscrolls, J. Mater. Chem. 2012, 22, pp. 14052–14060. DOI: https://doi.org/10.1039/C2JM31531A

Chen, W.; Rakhi, RB.; Alshareef, HN. Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J Mater Chem. A, 2013, 1, pp. 3315–

DOI: https://doi.org/10.1039/C3TA00499F

Wang, H.; Lin. J.; Xiang Shen. Z. Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices, 2016, 1, pp. 225–255. DOI:

https://doi.org/10.1016/j.jsamd.2016.08.001

Bhadra, S.; Khastgir, D.K.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci, 2009, 34, pp. 783–810. DOI: https://doi.org/10.1016/j.progpolymsci.2009.04.003

Bandgar, D.K.; Khuspe, G.D.; Pawar, R.C.; Lee, C. S.; Patil, V.B. Facile and novel route for preparation of nanostructured polyaniline (PANi) thin films. Appl Nanosci, 2014, 4, pp. 27–36.

DOI: https://doi.org/10.1007/s13204-012-0175-8

Wang, Y.; Wu, S.; Yin, Q.; Jiang, B.; Mo, S. Tuning thermoelectric performance of Poly (3, 4-ethylenedioxythiophene): Poly (styrene sulfonate)/Polyaniline composite films by nanostructure

evolution of polyaniline. Polymer Testing, 2021, 94, pp. 107017. DOI: https://doi.org/

1016/j.polymertesting.2020.107017

Panloetparnich, W.; Loryuenyong, V.; Buasri, A. The preparation of composites between polyaniline-silver (PANI-Ag) via interfacial polymerization. IOP Conference Series. Materials

Science and Engineering; Bristol, Nov 2020, vol. 965, N° 1.DOI: https://doi.org/10.1088/1757-899X/965/1/012015

Deivanayaki, S.; Ponnuswamy, V.; Ashokan, S.; Jayamurugan, P,; Mariappan, R. Synthesis and characterization of TiO2-doped Polyaniline nanocomposites by chemical oxidation method.

Materials Science in Semiconductor Processing, 2013, 16, pp. 554–559. DOI: https://doi.org/10.1016/j.mssp.2012.07.004

Erdem, E.; Karakışla, M.; Saçak, M. The chemical synthesis of conductive polyaniline doped with dicarboxylic acids. European Polymer Journal, 2004, 40, pp. 785–791. DOI:

https://doi.org/10.1016/j.eurpolymj.2003.12.007

Popov, A.; Brasiunas, B.; Mikoliunaite, L.; Bagdziunas, G.; Ramanavicius, A.; Ramanaviciene, A. Comparative study of polyaniline (PANI), poly(3,4-ethylenedioxythiophene) (PEDOT) and

PANI-PEDOT films electrochemically deposited on transparent indium thin oxide based electrodes. Polymer, 2019, 172, pp. 133–141. DOI: https://doi.org/10.1016/j.polymer.2019.03.059

Huang, J.; Kaner, R.B. A general chemical route to polyaniline nanofibers. Am. Chem. Soc, 2004, 126, pp. 851–855. DOI: https://doi.org/10.1021/ja0371754

Khuspe, G.D.; Bandgar, D.K.; Sen, S.; Patil, V.B. Fussy nanofibrous network of polyaniline (PANi) for NH3 detection. Synth Metals. 2012, 162, pp. 1822–1827. DOI:

https://doi.org/10.1016/j.synthmet.2012.08.022

Konyushenko, E.N. ; Stejskal, J. ; Šeděnková, I. ; Trchová, M. ; Sapurina, I. ; Cieslar, M.; Prokeš, J. Polyaniline nanotubes : conditions of formation. Polym Int, 2006, 55, pp. 31–39. DOI:

https://doi.org/10.1002/pi.1899

Perrin, D.D. CRC Handbook of Chemistry and Physics. vol 1250, 84th edn. CRC Press, Boca Raton, 2003, 1221 p.

MacDiarmid, A.G.; Epstein, A.J. Mater Res SocSymp Proc 1992, 247, 565–570

Adams, P.N.; Laughlin, P.J.; Monkman, A.P. Synthesis of high molecular weight polyaniline at low temperatures. Synthetic Metals.1996, 76, pp. 157–160. DOI: https://doi.org/10.1016/0379-

(95)03442-M

Adams, P.N.; Abell, L.; Middleton, A.; Monkman, A.P. Low temperature synthesis of high molecular weight polyaniline using dichromate oxidant. Synthetic Metals, 1997, 84, pp. 61-62.

DOI: https://doi.org/10.1016/S0379-6779(96)03836-2

Chaudhari, H.K.; Kelkar. D.S. X-ray diffraction study of doped polyaniline. J App Polym Sci, 1996, 62, pp. 15–18. DOI : https://doi.org/10.1002/(SICI)1097-4628(19961003)62:1<15::AIDAPP3>3.0.CO;2-V

Chaudhari, H.K.; Kelkar, D.S. Investigation of structure and electrical conductivity in doped polyaniline. Polym Int, 1997, 42, pp. 380–384. DOI: https://doi.org/10.1002/ (SICI) 1097-

(199704)42:4<380: AID-PI727>3.0.CO;2-F

Moon, Y.B.; Cao, Y.; Smith, P.; Heeger, A.J. X-Ray Scattering from Crystalline Polyaniline. Polymer Communications, 1989, 30, pp. 196–199.

Pouget, J.P.; Hsu, C.H.; Macdiarmid, A.G.; Epstien, A.J. Structural investigation of metallic PAN-CSA and some of its derivatives. Synth Met, 1995, 69, pp. 119–120. DOI:

https://doi.org/10.1016/0379-6779(94)02382-9

Vargas, L.R.; Poli, A.K.; Dutra, R.C.L.; de RCL, Souza C.B.; Baldan, M.R.; Gonçalves, E.S. Formation of composite polyaniline and graphene oxide by physical mixture method. J Aerosp

Technol Manag, 2017, 9, pp. 29–38. DOI: https://doi.org/10.5028/jatm.v9i1.697

Raghunathan, A.; Kahol, P.K.; Ho, J.C.; Chen. Y.Y.; Yao. Y.D.; Lin, Y.S.; Wessling, B. Lowtemperature heat capacities of polyaniline and polyaniline polymethylmethacrylate blends. Phys Rev B, 1998, 58, pp. 15955–15958.

Moravkova, Z.; Trchová, M.; Šeděnková, I.; Špírková, M.; Stejskal, J. Structure and stability of thin polyaniline films deposited in situ on silicon and gold during precipitation and dispersion

polymerization of aniline hydrochloride. Thin Solid Films, 2011, 519, pp. 5933–5941. DOI: http://doi.org/10.1016/j.tsf.2011.03.025

Ćirić-Marjanović, G.; Trchová, M.; Stejskal, J. The chemical oxidative polymerization of aniline in water: Raman spectroscopy. J. Raman Spectrosc, 2008, 39, pp. 1375–1387. DOI:

https://doi.org/10.1002/jrs.2007

Šeděnková, I.; Trchová, M.; Stejskal, J. Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water – FTIR and Raman spectroscopic studies. Polym.

Degrad. Stab, 2008, 93, pp. 2147–2157. DOI: https://doi.org/10.1016/j.polymdegradstab.

08.007

Trchová, M.; Morávková, Z.; Bláha, M.; Stejskal, J. Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochimica Acta, 2014, 122, pp. 28–38. DOI: https://doi.org/

1016/j.electacta.2013.10.133.


Refbacks

  • There are currently no refbacks.