Open Access Open Access  Restricted Access Subscription or Fee Access

Pitaya Cactus Endophytic Bacteria a Sustainable Option to Reduce and Optimize NH4NO3 in Phaseolus vulgaris

Juan Manuel Sánchez Yáñez, Juan Luis Ignacio-De la Cruz, Guidier Marto-Domínguez, Ramiro Eleazar Ruiz-Nájera

Abstract


The Phaseolus vulgaris crop demands nitrogen fertilizer as NH4NO3 for healthy growth. However, the application of NH4NO3 not uptaken by plant roots, generates N2O, a gas that contributes to the greenhouse effect besides loss of soil fertility; a sustainable option is to reduce up to 50% and to optimize it by inoculating P. vulgaris seeds with genera and species of plant growth promoting endophytic bacteria isolated from a desert xerophyte such as Stenocereus queretaroensis tolerant to water stress and NH4NO3 dependent nutritional stress. The aims of this research were: a) to isolate Burholderia vietnamiensis and Gluconoacetobacter diazotrophicus endophytic in root of S. queretaroensis; and b) the analysis of growth of P. vulgaris with B. vietnamiensis and G. diazotrophicus. P. vulgaris seeds were infected with B. vietnamiensis and G. diazotrophicus at 50% NH4NO3 in a greenhouse trial. After that, response variables in were determined P. vulgaris: germination, phenology and biomass to seedling and flowering; these numerical data were analyzed by ANOVA and Tukey (P<0.05%). The results showed a positive response of P. vulgaris to B.
vietnamiensis and G. diazotrophicus at 50% NH4NO3 in seed germination; on the phenology/biomassat seedling and flowering stages, in P. vulgaris detected 1.97 g of airborne dry weight (ADW) and 1.88 g of root dry weight (RDW), statistically different compared to 1.14 g ADW and 0.69 g RDW in P. vulgaris uninoculated with B. vietnamiensis and G. diazotrophicus, fed at 100% NH4NO3 or (relative control). These findings revealed that B. vietnamiensis and G. diazotrophicus endophytes of S. queretaroensis colonized the interior of the root system of P. vulgaris; there they converted root metabolites into phytohormones that optimized uptake of NH4NO3 at 50% without leaving any concentration of nitrogen fertilizer free, which avoids the emission of greenhouse gases and
consequently global warming.


Full Text:

PDF

References


Arguello-Navarro AZ, Moreno-Rozo LY. Evaluación del potencial biofertilizante de bacterias diazótrofas aisladas de suelos con cultivo de cacao (Theobroma cacao L.). Acta Agron. 2014; 63(3): 1–12. Disponible en: https://www.redalyc.org/pdf/1699/169931322006.pdf

Noumavo PA, Agbodjato NA, Baba-Moussa F, Adjanohoun A, Baba-Moussa L. Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. Afr J Biotechnol. 2016; 15(27): 1452–1463. https://doi.org/10.5897/AJB2016.15397

Ramakrishna W, Yadav R, Li K. Plant growth promoting bacteria in agriculture: two sides of a coin. Appl Soil Ecol. 2019; 138: 10–18. https://doi.org/10.1016/j.apsoil.2019.02.019

Paungfoo-Lonhienne C, Redding M, Pratt C, Wang W. Plant growth promoting rhizobacteria increase the efficiency of fertilisers while reducing nitrogen loss. J Environ Manag. 2019; 233: 337–341. https://doi.org/10.1016/j.jenvman.2018.12.052

Matsumura EE, Secco VA, Moreira RS, dos Santos OJAP, Hungria M, de Oliveira ALM. Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. Ann Microbiol. 2015; 65(4): 2187–2200. https://doi.org/10.1007/s13213-015-1059-4

Mishra S, Bhattacharjee A, Sharma S. An ecological insight into the multifaceted world of plant-endophyte association. Crit Rev Plant Sci. 2021; 40(2): 127–146. https://doi.org/10.1080/07352689.2021.1901044

Mascot-Gómez E, Flores J, López-Lozano NE. The seed-associated microbiome of four cactus species from Southern Chihuahuan Desert. J Arid Environ. 2021; 190: 104531. https://doi.org/10.1016/j.jaridenv.2021.104531

García-Cruz L, Valle-Guadarrama S, Guerra-Ramírez D, Martínez-Damián MT, Zuleta-Prada H. Cultivation, quality attributes, postharvest behavior, bioactive compounds, and uses of Stenocereus: A review. Sci Hortic. 2022; 304: 111336. https://doi.org/10.1016/j.scienta.2022.111336

Bolívar-Anillo HJ, Contreras-Zentella ML, Teherán-Sierra LG. Burkholderia tropica una bacteria con gran potencial para su uso en la agricultura. Tip. 2016; 19(2): 102–108. https://doi.org/10.1016/j.recqb.2016.06.003

Chávez-Ambriz LA, Hernández-Morales A, Cabrera-Luna JA, Luna-Martínez L, Pacheco-Aguilar JR, et al. Aislados de Bacillus provenientes de la rizósfera de cactus incrementan la germinación y la floración en Mammillaria spp. (Cactaceae). Rev Argent Microbiol. 2016; 48(4): 333–341. https://doi.org/10.1016/j.ram.2016.09.001

Delaporte-Quintana P, Lovaisa NC, Rapisarda VA, Pedraza RO. The plant growth promoting bacteria Gluconacetobacter diazotrophicus and Azospirillum brasilense contribute to the iron nutrition of strawberry plants through siderophores production. Plant Growth Regul. 2020; 91(2): 185–199. https://doi.org/10.1007/s10725-020-00598-0

Pal G, Saxena S, Kumar K, Verma A, Sahu PK, Pandey A, Verma SK, et al. Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiol Res. 2022; 265: 127201. https://doi.org/10.1016/j.micres.2022.127201

Norma oficial mexicana, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Norma Oficial Mexicana NOM-021- RECNAT-2000. Diario Oficial de la Federación, 31 de diciembre de 2002.

Sánchez-Yáñez JM. Brief treatise on agricultural, theoretical and practical microbiology. (1st ed.). Michoacan University of San Nicolás de Hidalgo, CIDEM, Secretary of Agricultural Development of the Government of the State of Michoacán. CONSUTENTA, SA de CV Morelia, Mich, México. 2007. ISBN: 978970-95424-1-7.

Walpole RE, Myers RH, Myers SL, Ye K. Probabilidad y estadística para ingeniería y ciencias. Norma. 2012; 162: 157.

Bernal M, Guzmán M. El antibiograma de discos. Normalización de la técnica de Kirby-Bauer. Biomédica. 1984; 4(3–4): 112–121. https://doi.org/10.7705/biomedica.v4i3-4.1891

Holt JG. Bergey´s manual of determinative bacteriology. USA: Williams & Wilkins; 1994.

Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, Saxena AK, et al. Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Leeuwenhoek. 2020; 113(8): 1075–1107. https://doi.org/10.1007/s10482-020-01429-y

Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, Hassan SED, et al. Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants. 2021; 10(5): 935. https://doi.org/10.3390/plants10050935

Firdous J, Mona R, Muhamad N. Endophytic bacteria and their potential application in agriculture: A review. Indian J Agric Res. 2019; 53(1): 1–7. https://doi.org/10.18805/IJARe.A-366

Kour D, Kaur T, Devi R, Rana KL, Yadav N, Rastegari AA, Yadav AN. Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. In New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2020; 255–279. https://doi.org/10.1016/B978-0-12-820528-0.00019-3

Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Ahmed AH, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res. 2018; 209: 21–32. https://doi.org/10.1016/j.micres.2018.02.003


Refbacks

  • There are currently no refbacks.