Open Access Open Access  Restricted Access Subscription or Fee Access

Theoretical Insights Into Structure, Electronic Properties, and Ion-pair Interactions In Organopalladium Salts [Pd(p-XC6H3CHMeNH2) (tmeda)] [BF4] AND [Pd(p-XC6H3CHMeNH2) (tmeda)] [PF6] (X = H, F, Me)

Sunil Kumar Patidar, Ravi Vishwakarma, Pankaj Kumar Bariya, Madhu Singh Singh, Sonu Sen

Abstract


The geometries of organopalladium salts [Pd(p-XC6H3CHMeNH2) (tmeda)] [BF4] and [Pd(pXC6H3CHMeNH2) (tmeda)] [PF6] (X = H, F, Me) (I-VI) have been optimized using BP86 and TPSS density functional at dispersion corrected DFT-D3(BJ) method. The optimized geometries of the salt [Pd(C6H4CHMeNH2) (tmeda)] [BF4] using TPSS functional in methanol slvent is in good agreement with available experimental data. The N1-Ha bond distances are longer than the N1-Hb bonds. The counterion strongly affects the noncovalent N1-Ha---F, N1-Hb---F, C1-H---F and C2-H---F bond distances. The N1-Ha----F bonding interactions are higher than the N1-Hb---F interactions. The cationic fragments are quite stronger to withdraw electron density from [PF6] - as compared to [BF4] - anion. The Mayer bond order values for N1-Ha bonds are significantly lower as compared to N1-Hb bonds. The Noncovalent interaction-reduced density (NCI-RDG) analysis showsthat the intermolecular interactions are attractive in nature. The ion pair dissociation energies in gas phase (79.7-86.8 kcal/mol) are higher than the solvent phase (6.7-7.5 kcal/mol). The cationic fragments [Pd(pXC6H3CHMeNH2) (tmeda)] + (X = H, F, Me), strongly interact with [PF6] - in salts IV-VI, then the [BF4] - in salts I-III.

Full Text:

PDF

References


C. Torborg, and M. Beller, Adv. Synth. Catal., 2009, 351, 3027–3034.

Giannerini M, Fañanás-Mastral M, Feringa BL. Direct catalytic cross-coupling of organolithium

compounds. Nature Chemistry. 2013 Aug;5(8):667–72.

Ruiz-Castillo P, Buchwald SL. Applications of palladium-catalyzed C–N cross-coupling reactions.

Chemical reviews. 2016 Oct 12;116(19):12564–649.

Biffis A, Centomo P, Del Zotto A, Zecca M. Pd metal catalysts for cross-couplings and related

reactions in the 21st century: a critical review. Chemical reviews. 2018 Feb 28;118(4):2249–95.

Dupont J, Consorti CS, Spencer J. The potential of palladacycles: more than just precatalysts.

Chemical Reviews. 2005 Jun 8;105(6):2527–72.

Albrecht M. Cyclometalation using d-block transition metals: Fundamental aspects and recent

trends. Chemical reviews. 2010 Feb 10;110(2):576–623.

Dupont J, Pfeffer M, editors. Palladacycles: synthesis, characterization and applications. John

Wiley & Sons; 2008 Oct 13.

J. P. Kleiman, and M. J. Dubeck, Am. Chem. Soc., 1963, 85, 1544–1545.

Cope AC, Siekman RW. Formation of covalent bonds from platinum or palladium to carbon by

direct substitution. Journal of the American Chemical Society. 1965 Jul;87(14):3272–3.

J. A. García-Lopez, M. J. Oliva-Madrid, I. Saura- ́Llamas, D. Bautista, and J. Vicente, Chem.

Commun., 2012, 6744–6746.

Mancilha FS, Barloy L, Rodembusch FS, Dupont J, Pfeffer M. Cyclopalladated complexes of 4-

aryl-2, 1, 3-benzothiadiazoles: new emitters in solution at room temperature. Dalton Transactions.

;40(40):10535–44.

Cautivo T, Klahn H, Godoy F, Lopez C, Font-Bardia M, Calvet T, Gutierrez-Puebla E, Monge A.

A New Cyclometalation Motif: Synthesis, Characterization, Structures, and Reactivity of Palladaand Platinacycles with a Bidentate {C (sp2, cyrhetrene), N}− Ligand. Organometallics. 2011 Nov

;30(21):5578–89.

Martin R, Crespo M, Font-Bardia M, Calvet T. Five-and seven-membered metallacycles in [C, N,

N′] and [C, N] cycloplatinated compounds. Organometallics. 2009 Jan 26;28(2):587–97.

Bedford RB, Betham M, Butts CP, Coles SJ, Hursthouse MB, Scully PN, Tucker JH, Wilkie J,

Willener Y. Anion complexation via C–H⋯ X interactions using a palladacyclic receptor. Chemical

communications. 2008(21):2429–31.

Martínez J, Pereira MT, Buceta I, Alberdi G, Amoedo A, Fernández JJ, López-Torres M, Vila JM.

Palladium (II) cyclometalated thiosemicarbazone compounds: A new class of bidentate P, S metallo

ligands. Organometallics. 2003 Dec 22;22(26):5581–4.

López Barallobre B, Rodríguez Ramírez A, Santos D, Albert Mach J, Ariza Piquer X, García

Gómez J, Granell Sanvicente JR. Preparation of benzolactams by Pd (II)-catalyzed carbonylation

of N-unprotected arylethylamines. Chemical Communications, 2011, vol. 47, p. 1054–1056. 2011.

Font H, Font-Bardia M, Gómez K, González G, Granell J, Macho I, Martínez M. A kineticomechanistic study on the C–H bond activation of primary benzylamines; cooperative and solid-state cyclopalladation on dimeric complexes. Dalton Transactions. 2014;43(36):13525–36.

Laga E, García‐Montero A, Sayago FJ, Soler T, Moncho S, Cativiela C, Martínez M, Urriolabeitia

EP. Cyclopalladation and Reactivity of Amino Esters through C H Bond Activation:

Experimental, Kinetic, and Density Functional Theory Mechanistic Studies. Chemistry–A European Journal. 2013 Dec 16;19(51):17398–412.

J. Albert, X. Ariza, T. Calvet, M. Bardia, J. Garcia, J. Granell, A. Lamela, B. Lopez, M. Martinez, L. Ortega, A. Rodriguez, and D. Santos, Organometallics, 2013, 32, 649–659.

A. Bjelopetrović, D. Barišić, Z. Duvnjak, I. Džajić, M. J. Kulcsár, I. Halasz, M. Martínez, A. Budimir, D. Babić, and M. Ćurić, Inorg. Chem., 2020, 59, 17123–17133.

J. Albert, J. Granell, J. A. Dura´n, A. Lozano, A. Luque, A. Mate, J. Quirante, M. K. Khosa, C. Calvis, R. Messeguer, L. Baldoma, and J. Badia, J. Organomet. Chem., 2017, 839, 116–125

Kalaiarasi G, Dharani S, Lynch VM, Prabhakaran R. para metallation of 3-acetyl-chromen-2-one

Schiff bases in tetranuclear palladacycles: focus on their biomolecular interaction and in vitro cytotoxicity. Dalton Transactions. 2019;48(33):12496–511.

Gao X, Gong G, Zhang Z, Du G, Cao Y, Zhao G. A novel cyclopalladated ferrocene derivative:

synthesis, single crystal structure and evaluation of in vitro antitumor activity. Journal of Molecular

Structure. 2020 Jan 15; 1200:127077.

Scattolin T, Voloshkin VA, Visentin F, Nolan SP. A critical review of palladium organometallic

anticancer agents. Cell Reports Physical Science. 2021 Jun 23;2(6).

Scattolin T, Piccin A, Mauceri M, Rizzolio F, Demitri N, Canzonieri V, Visentin F. Synthesis,

characterization and anticancer activity of palladium allyl complexes bearing benzimidazole-based

N-heterocyclic carbene (NHC) ligands. Polyhedron. 2021 Oct 1; 207:115381.

Kapdi AR, Fairlamb IJ. Anti-cancer palladium complexes: a focus on PdX 2 L 2, palladacycles and

related complexes. Chemical Society Reviews. 2014;43(13):4751–77.

Calmuschi-Cula B, Kalf I, Wang R, Englert U. The first trans-configured cyclopalladated amine.

Organometallics. 2005 Oct 24;24(22):5491–3.

Calmuschi B, Alesi M, Englert U. Ordered binary crystals via cocrystallisation of quasiracemic Pd

(II) complexes in a borderline regime between inertness and lability. Dalton Transactions.

(12):1852–7.

Calmuschi B, Englert U. Crystal engineering based on preferred mirror image recognition in square planar Pd (ii) complexes. CrystEngComm. 2005 Feb 25; 7:171–6.

Kalf I, Wang R, Englert U. Unexpected solids from enantiopure cationic palladium complexes and

racemic anions: A structural study of chiral non-discrimination. Journal of organometallic

chemistry. 2006 May 1;691(10):2277–85.

Kalf I, Wang R, Englert U. A robust conglomerate structure type in salts of cationic

organopalladium complexes and non-coordinating anions. CrystEngComm. 2008;10(1):39–47.

Şerb MD, Kalf I, Englert U. [rac-2-(1-Aminoethyl) phenyl-κ2C1, N] (ethylendiamine-κ2N, N′)

palladium (II) 3-methylbenzoate monohydrate. Acta Crystallographica Section E: Structure Reports

Online. 2010 Aug 1;66(8):m976-.

Braun B, Kalf I, Englert U. One of the most complex “small molecule structures” ever reported: 16 independent molecules in the asymmetric unit for an ortho-palladated primary amine. Chemical

Communications. 2011;47(13):3846–8.

Raven W, Kalf I, Englert U. Pseudosymmetry in a cyclopalladated compound. Acta

Crystallographica Section C: Crystal Structure Communications. 2012 Aug 15;68(8):m223–5.

Vicente J, Saura-Llamas I, Cuadrado J, Ramírez de Arellano MC. Ortho-metalated primary amines. 6.1 The first synthesis of six-membered palladacycles from primary amines containing electronwithdrawing substituents: end of the limiting rules of Cope and Friedrich on cyclopalladation of

benzyl-and phenethylamines. Organometallics. 2003 Dec 22;22(26):5513–7.

V Dunina V. Chiral Cyclopalladated Compounds: New Structures, Methodologies and

Applications. A Personal Account. Current Organic Chemistry. 2011 Sep 1;15(18):3415–40.

Tabrizi L, Zouchoune B, Zaiter A. Theoretical and experimental study of gold (III), palladium (II),

and platinum (II) complexes with 3-((4-nitrophenyl) thio) phenylcyanamide and 2, 2′-bipyridine

ligands: cytotoxic activity and interaction with 9-methylguanine. Inorganica Chimica Acta. 2020

Jan 1;499:119211.

A. Naghipoura, M. Sayadia, A. Sedghib, S. J. Sabouncheib, H. Babaeea, and B. Notashc, Inorganica Chimica Acta, 2021, 515, 120039.

A. P. H. Vaniel, A. E. Mauro, A. V. G. Netto, E. T. Almeida, P. C. Piquini, P. Zambiazi, D. F. Back,

and M. Hörner, Journal of Molecular Structure, 2015, 1083, 311–318.

L. E. Sarto, W. P. D. Badaró, E. P. Gois, M. I. F. Barbosa, C. Torres, R. B. Viana, J. Honorato, E.

E. Castellano and E. T. Almeida, Journal of Molecular Structure, 2020, 1204, 127549.

A. J. Labarre, S. Coufourier, R. Tamion, A. Le Foll, V. Levacher, C. Afonso, V. Gandon, G.

Journot, J. F. Brie, and C. Hoarau, Organometallics, 2020, 39, 767–773.

S. R. Majeed, M. A. Amin, F. A. Attaby, and A. A. Soliman, Biointerface research in applied

chemistry, 2021, 6, 14316 –14335.

K. H. Yu, S. L. Huang, Y. H. Liu, Y. Wang, S. T. Liu, Y. C. Cheng, Y. F. Lin, and J. T. Chen,

Molecules, 2017, 22, 1095

N. Marom, A. Tkatchenko, M. Rossi, V. V. Gobre, O. Hod, M. Scheffer and L. Kronik, J. Chem.

Theory Comput., 2011, 7, 3944–3951.

A. Rimola, B. Civalleri and P. Ugliengo, Phys. Chem. Chem. Phys., 2010, 12, 6357–6366.

I. A. Fedorov, Y. N. Zhuravlev, and V. P. Berveno, Phys. Chem. Chem. Phys., 2011, 13, 5679–

T. Bucko, J. Hafner, S. Lebegue and J. G. Angyan, J. Phys. Chem. A, 2010, 114, 11814–11824.

Goerigk L, Grimme S. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals

Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry,

Kinetics, and Noncovalent Interactions. Journal of chemical theory and computation. 2011 Feb

;7(2):291–309.

Pandey KK. Theoretical insights into structure, bonding, reactivity, and importance of ion-pair

interactions in Kirby's tetrafluoroboric acid salts of twisted amides. RSC advances. 2015;5(128):105668–77.

Pandey KK. Does hydrohalic acid HX (X= F, Cl) form true N-protonated twisted amide salts?

Effects of anions on the ion-pair interactions and on the amide moiety in N-protonated tricyclic

twisted amide salts. New Journal of Chemistry. 2016;40(9):7831–9.

Neese F. Wiley interdiscip. Rev.: Comput. Mol. Sci. 2012;2(1):73–8.

F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2017, 8, e1327.

Becke AD, Johnson ER. A density-functional model of the dispersion interaction. The Journal of

chemical physics. 2005 Oct 15;123(15).

Johnson ER, Becke AD. A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections. The Journal of chemical physics. 2006 May 7;124(17).

Johnson ER, Becke AD. Tests of an exact-exchange-based density-functional theory on transitionmetal complexes. Canadian Journal of Chemistry. 2009 Oct;87(10):1369–73.

Perdew JP. Density-functional approximation for the correlation energy of the inhomogeneous

electron gas. Physical Review B. 1986 Jun 15;33(12):8822.

J. Tao, J. P. Perdew, V. N. Staroerov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. Journal of molecular

graphics. 1996 Feb 1;14(1):33–8.

M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison,

Journal of Cheminformatics, 2012, 4, 17.

Zahedi E, Shaabani S, Shiroudi A. Following the molecular mechanism of decarbonylation of

unsaturated cyclic ketones using bonding evolution theory coupled with NCI analysis. The Journal

of Physical Chemistry A. 2017 Nov 9;121(44):8504–17.

Venkataramanan NS, Suvitha A, Kawazoe Y. Density functional theory study on the dihydrogen

bond cooperativity in the growth behavior of dimethyl sulfoxide clusters. Journal of Molecular

Liquids. 2018 Jan 1; 249:454–62.

Venkataramanan NS, Suvitha A. Nature of bonding and cooperativity in linear DMSO clusters: a

DFT, AIM and NCI analysis. Journal of Molecular Graphics and Modelling. 2018 May 1; 81:50–9.

Venkataramanan NS, Suvitha A, Kawazoe Y. Intermolecular interaction in nucleobases and

dimethyl sulfoxide/water molecules: A DFT, NBO, AIM and NCI analysis. Journal of molecular

graphics and modelling. 2017 Nov 1; 78:48–60.




DOI: https://doi.org/10.37628/jcscr.v9i1.1430

Refbacks

  • There are currently no refbacks.