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Abstract 

In the present study, estimation of optimum input parameters corresponding to desired output 

parameters is carried out for a typical sponge iron process. For this purpose data of rotary 

kiln of the process are collected. It includes temperatures profiles inside the rotary kiln and 

flow rates of air, iron ore, feed coal, slinger coal and sponge iron. These data are analysed 

using ANN and group method of data handling (GMDH) approaches. Sixteen ANN 

topologies are proposed where TOP-3 is found best, which has mean absolute error (MAE) 

as 8.42. However, GMDH analysed the data with MAE of 8.72. Optimum values of operating 

parameters are found through ANN and GMDH approach and compared with that are used 

in the existing process. It shows that values of input parameters found through ANN can be 

selected as optimum based on minimum operating cost. 
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INTRODUCTION 
The reduced iron exhibits a honeycomb 

structure, due to which it is named as 

sponge iron. It is seen that the growth of 

sponge iron industry in last few years is 

remarkable and today India is the largest 

producer of sponge iron as it covers 16% 

of global output.
[1,2]

 Sponge iron is 

produced primarily both using non-coking 

coal and natural gas as reductant and 

therefore classified based on coal and gas, 

respectively. With the promising 

availability of coal in India, sponge iron 

plants based on coal share major 

proportion of its production. 

 

With the availability of raw materials, high 

demand of sponge iron and less payback 

period, sponge iron industry has emerged 

as a profitable venture. However, due to 

lack of proper integration techniques, non-

optimal process parameters and high 

energy consumption, the industries are 

facing a setback in the market. Amongst 

these drawbacks problems of proper 

integration and high energy consumption 

are addressed by many investigators.
[3–12]

 

However, the optimization of input 

parameters based on desired output of the 

industry remains untouched. These 

parameters include temperature profile 

inside the rotary kiln and flow rate of 

sponge iron. These parameters depend on 

flow rate of air, iron ore and coal, which 

may be regulated to suit the desired output 

of the process. For this purpose one may 

use manual practice to observe the value of 

output parameter with the variation of 

input parameter. On the other hand, an 

easy methodology to optimize the input 

parameters is considered in the present 

work, which is neural network.
[13,14]
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In the present work, industrial data of 

sponge iron process are analysed through 2 

different neural network approaches i.e., 

using artificial neural network (ANN) and 

group method of data handling (GMDH) 

algorithm. Using these optimum input 

parameters are found based on operating 

cost. 

 

SPONGE IRON PROCESS 
The schematic of sponge iron process is 

shown in Figure 1. Iron ore, coal and 

dolomite are fed to the kiln at controlled 

rates without pre-mixing and charge 

moves through the kiln (RK) depending 

upon rotation and inclination of the kiln. 

Air is also injected along the kiln length.
[9]

 

There are two reduction reactions and five 

combustion reactions. 

The material discharged from the kiln is 

cooled in rotary cooler (RC) using water 

sprayed over its shell. The cooler 

discharge is then separated into sponge 

iron, char and ash through magnetic 

separator. Waste gas generated in the 

rotary kiln is passed through dust settling 

chamber (DSC). Further, CO produced 

through incomplete oxidation in RK is 

converted to CO2 using excess air in after 

burning chamber (ABC) as shown in 

Figure 1. Waste gas, which exits the ABC, 

is passed through waste heat recovery 

boiler (WHRB) to produce steam for 

power generation. Further, it is passed 

through electro static precipitator (ESP) 

for dust removal and then released to the 

atmosphere through chimney. The flow of 

waste gas from rotary kiln to chimney is 

maintained using an induced draft fan 

located beneath the chimney. 

 

As the aim of the present work is to 

correlate the input and output parameters 

of the sponge iron process using neural 

networks, data of primary unit of process 

i.e., rotary kiln is collected.

 

 
Fig. 1. Process Flow Diagram of Sponge Iron Process. 

 

DATA COLLECTION 

The schematic of rotary kiln is shown in 

Figure 2. The temperatures, T1 to T12, of 

the kiln are observed through 12 

thermocouples placed along the length of 

the kiln. These values show temperature 

profile inside the kiln. Around the 

periphery of the kiln air is injected through 

positions, AT1, AT2, AT3, MF1 and MF2, 

as shown in Figure 2. At AT1 to AT3 one 

blower is attached to each position 

whereas, at MF1 and MF2 two blowers are 
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placed to each inlet. Thus, total seven 

blowers are placed. To produce sponge 

iron, iron ore and coal are used as raw 

materials. In the kiln coal is injected from 

feed as well as discharge ends, which is 

called feed coal and slinger coal, 

respectively, as shown in Figure 1. Slinger 

coal is fed pneumatically in different sizes 

such as fine, medium and coarse, whereas, 

feed coal is fed as coarse. This is due to 

the process requirement. 

 

For the present work data of a typical 

Indian sponge iron industry with 

production capacity of 350 tpd is collected 

on per hour basis. There are 440 data 

points, which are collected for 24 hours for 

18 days and 8 hours of 19th day. It shows 

that flow rate of air is represented in terms 

of % damper opening of blower such as 

20, 19, 43, etc. Damper opening of 1% 

shows air flow rate around 600m
3
/h. 

Before using these data for analysis, mass 

balance is performed for all 440 data 

points, which shows maximum deviation 

of 5.4%. It is not significant and thus, all 

440 data points are considered for further 

analysis. 

 

The data consists of ten input parameters 

such as IO, FC, FSC, MSC and CSC and 

flow rate of air at position AT1, AT2, 

AT3, MF1 and MF2. It also contains 13 

output parameters as T1, T2, T3, T4, T5, 

T6, T7, T8, T9, T10, T11, T12 and SI. The 

operating ranges of input and output 

parameters, found for 440 data points, are 

summarized in Table 1. 

 

 
Fig. 2. Schematic of Rotary Kiln. 

 

Table 1. Operating Ranges of Input and Output Parameters. 

Parameter Operating range Parameter Operating range 

IO 21–23.8 tph T1 1002–1108°C 

FC 8.2–8.8 tph T2 986–1098°C 

FSC 1.7–1.9 tph T3 976–1091°C 

MSC 2.65–4 tph T4 992–1092°C 

CSC 2.9–3.9 tph T5 1015–1109°C 

SI 13.53–15.355 tph T6 1019–1102°C 

AT1 16–20% T7 1002–1097°C 

AT2 19–21% T8 1000–1098°C 

AT3 3–14% T9 862–991°C 

MF1 43–53% T10 829–955°C 

MF2 20–23% T11 764–911°C 

  T12 700–800°C 
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DATA ANALYSIS APPROACH 
In the present work input and output 

parameters of rotary kiln are correlated 

through different approaches such as 

artificial neural network (ANN) and group 

method of data handling (GMDH) method. 

 

The ANN Approach 

Development of ANN Topologies 

As ANN approach provides relationship 

between input and output parameters it 

affects by varying a few factors such as 

randomization, number of hidden layers, 

type of models, type of functions, number 

of epochs, etc. Considering these factors 

sixteen ANN topologies are developed as 

reported in Table 2. As more number of 

hidden layers complexes the solution, only 

up to two is considered in these topologies. 

Multilayer preceptrons (MLP) and Radial 

basis function (RBF) models are used as 

these are most suited to handle random 

industrial data. Moreover, TanhAxon and 

SigmoidAxon are accounted as different 

functions through which input and output 

parameters are correlated. 

 

These topologies are solved using 

NeuroSolutions 4.0 software. For this 

purpose 2/3rd of data points are used as 

training and rest as testing. So, amongst 

440 data points 295 and 145 are 

considered for training and testing, 

respectively. The performance of a 

topology is defined by two parameters 

such as Normalized Mean Square Error 

(NMSE) and the correlation coefficient (R) 

defined through Eqs. 1 and 2.
[15]

 The 

values of NMSE and R should be 

minimum and close to unity, respectively, 

for optimum topology. 

              (1) 

               (2) 

 

Though ANN correlates the input and 

output parameters and provides value of R 

for each output parameters, it is very 

difficult to prepare governing equations of 

output parameters as a function of input 

parameters. This problem is further 

enhanced if significant number of 

parameters interacts with each other. Thus, 

to find the governing equations of output 

parameters GMDH approach is used, 

which is based on neural network. 

 

The GMDH Algorithm 

The correlation between various input and 

output parameters are developed using 

GMDH algorithm based on Volterra 

functional series
[16]

 as: 

y = a0 + ∑ ai xi + ∑ ∑ aij xi xj + ∑ ∑ ∑ aijk 

xi xj xk +.....                                             (3) 

 

Where, i,j,k vary from 1 to m 

During modelling GMDH algorithm 

involves four heuristics rules as: 

 To collect a set of data points that 

seems to be relevant to the object.  

 It divides data points into 2 groups. 

First is used to estimate the 

coefficients of model whereas, the 

second separates information 

embedded in the data into either useful 

or harmful.  

 It creates a set of elementary functions 

where complexity will increase 

through an iterative procedure 

producing different models.  

 It applies an external criterion to 

choose the optimum model using 

Gödel’s incompleteness theorem.
[17]

 

 

Ivakhnenko
[18]

 claimed that the self-

organization is necessary if it is impossible 

to trace all input-output relationships 
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through an entire system which is too 

complex. This ability made GMDH 

algorithm an appropriate modelling 

procedure for real world systems.
[16]

 

 

RESULTS AND DISCUSSION 
As the present work analyses data of rotary 

kiln through ANN topologies and GMDH 

approach, the results found using these are 

discussed in subsequent paragraphs: 

 

ANN Topologies 

Topologies, TOP-1 to TOP-16, are 

proposed for complete data as shown in 

Table 2. For these topologies the average 

values of R, computed using R values of 

individual output parameters, T1 to T12 

and SI, are plotted in Figure 3. It shows 

that average value of R is maximum for 

topology, TOP-3, which is found as 

0.8026 using 1000 epochs. When TOP-3 is 

trained with increased number of epochs 

as 2000, 3000, 4000 and 5000 the average 

value of R is found as 0.8147, 0.7902, 

0.7823 and 0.7999, respectively. Thus, it is 

maximum for 2000 epochs. For this 

topology, average values of mean absolute 

error (MAE) and NMSE are found as 8.42 

and 0.333, respectively. The average MAE 

and NMSE is based on MAE and NMSE 

of individual output parameter such as T1, 

T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, 

T12 and SI as shown in Table 3.

 

Table 2. Topologies for ANN Network. 

S. no. Networks tested for present work Randomization No. of hidden layers Model Function 

1 TOP-1 1 1 MLP TanhAxon 

2 TOP-2 1 1 MLP SigmoidAxon 

3 TOP-3 1 1 RBF TanhAxon 

4 TOP-4 1 1 RBF SigmoidAxon 

5 TOP-5 2 1 MLP TanhAxon 

6 TOP-6 2 1 MLP SigmoidAxon 

7 TOP-7 2 1 RBF TanhAxon 

8 TOP-8 2 1 RBF SigmoidAxon 

9 TOP-9 1 2 MLP TanhAxon 

10 TOP-10 1 2 MLP SigmoidAxon 

11 TOP-11 1 2 RBF TanhAxon 

12 TOP-12 1 2 RBF SigmoidAxon 

13 TOP-13 2 2 MLP TanhAxon 

14 TOP-14 2 2 MLP SigmoidAxon 

15 TOP-15 2 2 RBF TanhAxon 

16 TOP-16 2 2 RBF SigmoidAxon 

 

Table 3. Testing Report for Data-1. 

Parameter SI T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

NMSE 0.18 0.13 0.14 0.13 0.52 0.33 0.64 0.37 0.38 0.48 0.34 0.38 0.30 

MAE 0.09 8.42 8.71 8.77 9.73 7.19 7.15 10.33 9.50 10.55 9.86 9.94 9.26 

R 0.91 0.93 0.93 0.93 0.71 0.82 0.60 0.80 0.79 0.72 0.81 0.79 0.84 

 

It is observed that for the present data the 

maximum value of R is found as 0.8147 

through ANN, which is not very 

significant. It is due to large variation in 

input and output parameters. For example, 

temperature, T1, varies from 1108 to 

1002°C, which is 9.57%, as shown in 

Table 1. Similarly, other output parameters 
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such as T2, T3, T4, T5, T6, T7, T8, T9, 

T10, T11, T12 and SI vary by 10.2%, 

10.5%, 9.16%, 8.48%, 7.53%, 10.1%, 

13%, 13.2%, 16.1%, 12.5% and 12%, 

respectively.  

 

In the similar pattern variations in input 

parameters such as flow rate of air at 

positions, AT1, AT2, AT3, MF1 and MF2, 

and IO, FC, FSC, MSC and CSC are 

observed as 20%, 9.524%, 78.6%, 18.87%, 

13.04%, 11.8%, 6.8%, 10.5%, 33.8% and 

25.6%, respectively. It is to be noted that 

variation in flow rate of air at AT3 is 

maximum, i.e. 78.6%, as maximum and 

minimum values of % of damper opening 

for AT3, reported in Table 1, are 14 and 3, 

respectively. These are corresponding to 

8400 m
3
/h to 1800 m

3
/h. 

 

As topology, TOP-3, with 2000 epochs 

shows best average value of R it is used 

for further analysis. The operating range of 

output parameters, T1 to T12 and SI, 

predicted for TOP-3 is shown in Table 4. 

These ranges are found based on minimum 

and maximum values of output parameters 

predicted while testing.  

 

In fact, the value of maximum temperature 

in output parameters, T1 to T12, predicted 

through software is 1094.9°; whereas, it 

was 1109° in industrial data shown in 

Table 1. This meets the process 

requirement as accretion formation inside 

the kiln starts at 1100°C. It is due to low 

melting point compounds available in the 

kiln such as FeO, SiO2, Al2O3 and CaO or 

MgO.

 
Fig. 3. Values of R for Different ANN Topologies Proposed for Complete Data. 
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Table 4. Ranges of Output Parameters 

Predicted for Complete Data. 

Output parameter Operating range 

SI 13.7–15.4 t/h 

T1 1004.7–1092°C 

T2 989.3–1081.7°C 

T3 978.2–1075.5°C 

T4 1020.7–1078.9°C 

T5 1048–1094.9°C 

T6 1052.9–1090.4°C 

T7 999.3–1070.3°C 

T8 972.4–1035°C 

T9 912.9–966°C 

T10 865.2–928.5°C 

T11 800.5–857.8°C 

T12 728.7–788.4°C 

 

Selection of Best Value of Input 

Parameters Using ANN 

The operating ranges of output parameters, 

predicted for best ANN topology, TOP-3, 

are shown in Table 4. These ranges of 

output parameters should be maintained 

during the process, which can be achieved 

in the process by adjusting input 

parameters.  

 

However, it is not known a priory that how 

each input parameter must be set to find 

desired value of output parameter. For this 

purpose one should observe output 

parameters while varying values of input 

parameters. It is a cumbersome approach 

which requires considerable 

experimentation to set the optimum input 

parameters.  

 

Thus, a better option is to predict values of 

input parameters correspond to desired 

output using ANN topologies. For this 

purpose parameters, T1, T2, T3, T4, T5, 

T6, T7, T8, T9, T10, T11, T12 and SI, are 

considered as input whereas IO, FC, FSC, 

MSC, CSC, AT1, AT2, AT3, MF1 and 

MF2 are accounted as output parameters.  

 

Further, the values of T1, T2, T3, T4, T5, 

T6, T7, T8, T9, T10, T11, T12 and SI for 

all data points are varied in such a manner 

so that all values of these parameters 

should fall within the operating range 

shown in Table 4.  

 

For example, if value of T1 in industrial 

data is 990°C, it is replaced with 1004.7°C 

shown in Table 4. For these parameters, 

values of output parameters are found 

using Neurosolutions 4.0, which should be 

the input parameters for desired range of 

output parameters shown in Table 4. 

 

For this purpose, topologies, TOP-1 to 

TOP-16, are solved and the average values 

of R are shown in Figure 4. It shows that 

value of R is maximum for topology, 

TOP- 5, which is predicted as 0.8621 for 

1000 epochs. When topology, TOP-5, is 

trained with 2000, 3000, 4000 and 5000 

number of epochs the average value of R 

is found as 0.8791, 0.7674, 0.8513 and 

0.8161, respectively.  

 

Thus, TOP-5 with 2000 epochs is found as 

best. Based on this analysis the average 

values of output parameters, IO, FC, FSC, 

MSC, CSC, AT1, AT2, AT3, MF1 and 

MF2, are found as 23.4 tph, 8.7 tph, 1.8 

tph, 3.6 tph, 3.5 tph, 11,391.9 m
3
/h, 

11,857.2 m
3
/h, 3602.2 m

3
/h, 31,110.9 m

3
/h 

and 12,772.7 m
3
/h, respectively.  

 

As these values correlate the output with 

appreciable value of R, i.e. 0.8791, these 

are considered as most suitable values of 

input parameters for desired range of 

output parameters shown in Table 4.  

 

Thus, these values of input parameters are 

considered to be optimum for the present 

industrial data found.
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Fig. 4. Average Values of R for ANN Topologies Developed When T1 to T12 and SI Are 

Treated as Input Parameters. 

 

Analysis of Data Using GMDH Algorithm 
In this approach input and output parameters of rotary kiln are analysed using software, 

GMDH Shell version 2.6.6, with regression neural type algorithm. In this analysis data of 

rotary kiln with ten input and thirteen output parameters is considered. Two hidden layers and 

neuron function of two degree with neuron complexity up to 2 are used for simulation. The 

result shows the value of average MAE as 8.72. The equations of output parameters as 

functions of input parameters based on Eq. 3 are: 

For output parameter, T1 

T1 = 3198 + 4.8× x −0.001962 × x
2
 −9.905× y + 0.004873× y

2
                                       (4) 

y = −9364 + 439.4 × IO −0.01796 × IO ×MF1+ 0.425×MF1                                       (5) 

x = −746.6 +995×CSC −0.02808×CSC × AT 3 −141.3×(CSC)
2
 + 0.1281× AT 3  

− 3.66 ×10
−6

 ×(AT 3)
2
                                                                                                   (6) 

 

For output parameter, T2 

T 2 = 3095 +13.08× x −0.03698× x × y + 0.01244 × y
2
 −18.07 × y + 0.0274 × y

2
               (7) 

x = −1028 +890.1×CSC −0.04294×CSC × AT1−73.02×CSC
2
 +0.1375× AT1               (8) 

y = −1.413×10
4
 +1196 × IO − 27.93×(IO)

2
 + 0.1574 ×MF1− 2.504 ×10

−6
 (MF1)

2
               (9) 

 

For output parameter, T3 

T 3 =1341+11.25× x −0.05682 × x × y + 0.02318× y
2
 −12.89 × y + 0.0349 × y

2
             (10) 

x =1709 −908.5× FSC +121.8× FSC ×CSC +121.5 ×(FSC)
2
 + 220.2 ×CSC 
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−78.97 × (CSC)
2
                                                                                                             (11) 

y = −8867 + 420.6 × IO −0.01719 × IO ×MF1+ 0.4043×MF1                                     (12) 

 

For output parameter, T4 

T 4 = 2.811×10
4
 + 44.72 × x −0.0418× x × y −97.22 × y + 0.06725× y

2
                         (13) 

x = 2.892 ×10
4
 −6275× FC +169.1× FC ×CSC +339.7 ×(FC)

2
 −838×CSC  

−97.03×(CSC)
2
                                                                                                             (14) 

y = 3501−0.4532 × AT1+1.489 ×10
−6

 × AT1× AT 3 + 2.065×10
−5

 ×(AT1)
2
  

− 1.424 ×10
−6

 ×(AT 3)
2
                                                                                                 (15) 

 

For output parameter, T5 

T 5 = 2.069 ×10
4
 + 20.29 × x −0.018× x × y −57.87 × y + 0.03598× y

2
                         (16) 

x =1465 −0.04625× AT3 + 4.402 ×10
−6

 × AT3×MF 2 −8.32 ×10
−7

 ×(AT3)
2
  

− 0.0317 ×(MF 2)                                                                                      (17) 

y =1846 −1011×FSC −0.08869×FSC × AT 2 +595.5×FSC
2
 +7.22×10

−6
 ×(AT 2)

2
     (18) 

 

For output parameter, T6 

T 6 = −6.44 ×10
4
 + 0.0004133 × x

2
 +121.2 × y −0.0565× y

2
                                              (19) 

x = −6560 + 0.3439 × AT3 −9.97 ×10
−6

 × AT3×MF1− 4.601×10
−6

 ×(AT3)
2
  

+ 0.455×MF1−6.797 ×10
−6

 ×(MF1)
2
                                                                         (20) 

y = −0.1077× AT 2 −8.479×10
−7

 × AT 2×MF2 +5.1×10
−6

 ×(AT 2)
2
 +0.2709×MF2  

− 1.04×10
−5

 ×(MF2)
2
                                                                                                 (21) 

 

For output parameter, T7 

T 7 = −1491+ 0.3402 × AT3 −0.00035× AT3× x + 2.882 ×10
−6

 ×(AT3)
2
 + 2.483× x            (22) 

x = −6949 − 239.4 × IO ×CSC +15.51×(IO)
2
 +5234 ×CSC + 64.74(CSC)

2
                         (23) 

 

For output parameter, T8 

T8 = −3.24 ×10
4
 + 64.71× x −0.02145× x × y −0.0212 × x

2
 + 0.7536 × y + 0.0106 × y

2
      (24) 

x = 3336 −1149 ×MSC + 0.0326 ×MSC × AT 3 +145.9 ×(MSC)
2
 −0.1667 × AT 3  

+ 5.57 ×10
−6

 ×(AT 3)
2
                                                                                                 (25) 

y = −2865 +369.3×CSC −0.06198×CSC × AT 2 +62.72×(CSC)
2
 +0.5193× AT 2  

− 1.269×10
−5

 ×(AT 2)
2
                                                                                                 (26) 

 

For output parameter, T9 

T 9 = −8.17 ×10
4
 + 0.1935 × AT 3 −0.0002114 × AT 3× x +1.462 ×10

−6
 ×(AT 3)

2
 

+ 172.6 × x −0.09007 × x
2
                                                                                     (27) 

x = 2284 − 438.2 ×CSC + 0.0366 ×CSC ×MF 2 −0.1135×MF 2                         (28) 

 

For output parameter, T10 

T10 = −6845 +16.24 × x −0.008809 × x
2
 + 0.0003269 × y

2
                                                 (29) 

x = 5046 + 0.1292 ×MF1×CSC −7.207 ×10
−6

 ×(MF1)
2
 − 2479 ×CSC − 209.5×(CSC)

2
  

                                                                                                                                               (30) 

y = 0.3154 × AT3 −0.01388× AT3× IO +1.525×10
−6

 ×(AT3)
2
 −50.08× IO +3.778×(IO)

2
 

                                                                                                                                    (31) 

For output parameter, T11 

T11 = −2.208×10
4
 + 20.28× x −0.02341× x × y +33.22 × y −0.00779 × y

2
                         (32) 

x = 5327 − 2660 ×CSC + 0.1387 ×CSC ×MF1 − 228.9 ×CSC
2
 −7.73×10

−6
 ×(MF1)

2
          (33) 
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y = 2604 −880.9 ×MSC + 0.023×MSC × AT 3 +114.1×MSC
2
  

− 0.1258× AT 3×5.002 ×10
−6

 ×(AT 3)
2
                                                                         (34) 

 

For output parameter, T12 

T12 = −1.307 ×10
4
 + 0.03408× AT 2 −0.0002954 × AT 2 × x +8.331×10

−6
 ×(AT 2)

2
 

+ 34.46 × x −0.0195× x
2
                                                                                     (35) 

x = −263.7 + 453.4 ×CSC −0.0286 ×CSC × AT 3 − 43.56 ×(CSC)
2
  

+ 0.0832 × AT 3×1.66 ×10
−6

 ×(AT 3)
2
                                                                         (36) 

 

For output parameter, SI 

SI = −47.93 + 0.0064 × AT 3 −0.00039 × AT 3× x −3.51×10
−8

 ×(AT 3)
2
 + 4.113× x           (37) 

x = 496 −81.22 × FC +11.66 × FC ×CSC + 2.867 ×(FC)
2
 −97.19 ×CSC −0.513×(CSC)

2
            

                                                                                                                                               (38) 

 Table 5. Operating Ranges and % Error Involved in Equations. 

Output parameter Eq. no. Operating range % error Input parameters 

T1,°C 11, 12, 13 1002–1108 6.4 CSC, AT3, IO, MF1 

T2,°C 14, 15, 16 986–1098 5.5 CSC, AT1, IO, MF1 

T3,°C 17, 18, 19 976–1091 10.3 FSC, CSC, IO, MF1 

T4,°C 20, 21, 22 992–1092 4.42 FC, CSC, AT1, AT3 

T5,°C 23, 24, 25 1015–1109 4.13 AT3, MF2, FSC, AT2 

T6,°C 26, 27, 28 1019–1102 4.14 AT3, MF1, MF2, AT2 

T7,°C 29, 30 979–1089 1.9 IO, CSC, AT3 

T8,°C 31, 32, 33 942–1052 7.13 MSC, AT3, CSC, AT2 

T9,°C 34, 35 862–991 8.54 CSC, MF2, AT3 

T10,°C 36, 37, 38 829–955 9.6 MF1, CSC, AT3, IO 

T11,°C 39, 40, 41 764–911 9.5 CSC, MF1, MSC, AT3 

T12,°C 42, 43 700–800 10.2 CSC, AT2, AT3 

Flow rate of SI, t/h 44, 45 13.53–15.355 4.8 FC, CSC, AT3 

 

The operating ranges of these equations as 

well as maximum % error is summarized 

in Table 5. The % error is computed for 

each data point and maximum deviation 

between values obtained from industry and 

that predicted using respective equations is 

reported in Table 5. It shows that the 

maximum % error within operating range 

of equations is found as ±10.5%. 

 

Selection of Best Value of Input 

Parameters Using GMDH 

Equations 4 to 38 are used to find the 

feasible region of input parameters. The 

parameters used to plot the feasible region 

should be those which affect maximum 

number of output parameters. It is evident 

from Table 5 that amongst 13 output 

parameters, input parameters such as IO, 

FC, FSC, MSC, CSC, AT1, AT2, AT3, 

MF1 and MF2 affect 5, 2, 2, 2, 11, 2, 3, 

11, 6 and 3 number of output parameters. 

It shows that CSC and AT3 affect 

maximum number of output parameters, 

which are 11. Thus, feasible region is 

plotted between CSC vs. AT3. 

 

In this region optimum values of input 

parameters are found based on minimum 

operating cost. Amongst ten input 

parameters only five such as IO, FC, FSC, 

MSC and CSC are accounted in the 

operating cost. Hence, these parameters 

are plotted in the feasible region as shown 

in Figure 5. It indicates the CSC and air 

flow rate at position, AT3, for different 

FC, IO and MSC. The values of CSC and 

AT3 for different FC are found using 
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equations Eqs. 13, 14 and 15. Similarly, 

curves for different values of IO and MSC 

are plotted using equations developed for 

parameters, T7 and T8, respectively. 

 

The ranges of FC, IO and MSC, 

considered in Figure 5, are based on values 

obtained from industrial data. To compute 

values of CSC and AT3 constant values of 

T4, T7 and T8, found through averaging 

the values of operating range shown in 

Table 5, are used. In fact, amongst five 

input parameters, IO, FC, FSC, MSC and 

CSC, FSC is not shown in Figure 5 as it is 

small in amount. Therefore, the average 

value of FSC as 1.8 tph, found using its 

operating range shown in Table 1, is used 

while computing the operating cost.

 

 
Fig. 5. Feasible Region for Different Input Parameters. 

 

Figure 5 shows that at constant value of 

FC as flow rate of AT3 increases the value 

of CSC first increases and then decreases. 

The plausible explanation is that as AT3 

increases more amount of oxygen enters 

the kiln, which enhances the requirement 

of coal to carry out combustion in the kiln. 

As value of FC is fixed increased demand 

of coal is supplied through CSC. Further, 

increase in flow rate of AT3 may cause 

some of coal particle to leave the kiln with 

waste gas. Due to this at higher flow rate 

of AT3 value of CSC decreases. Figure 5 

also shows that at fixed value of IO, 

amount of CSC is not affected by AT3 up 

to certain value.  

Further, it decreases and then increases 

with increase in AT3. It is so at higher 

flow rate of air at AT3 some amount of 

coal may leave the kiln along with waste 

gas. The reduced amount of coal is 

supplied additionally. Thus, for increased 

flow rate of air at AT3 a significant 

amount of coal is supplied, which causes 

sharp increase in CSC. Further, it is noted 

that more value of IO causes more 

reduction to occur, which requires more 

amount of coal. Due to this at increased 

value of IO, amount of CSC also increases. 

Similar explanation can be illustrated for 

MSC. Figure 5 indicates the feasible 

region through shaded area. It is 

surrounded by curves of input parameters 

such as FC, IO and MSC.  

 

To compute the values of input parameters 

where operating cost is minimum a few 

data points are collected from Figure 5 
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within or outside the feasible region. These 

points are indicated through 'a' to 'h ' as 

shown in Figure 5. For these points values 

of different input parameters along with 

operating costs are predicted and shown in 

Table 6. The operating cost is computed 

using cost of iron ore and coal as Rs 

5080/ton and Rs 3900/ton, respectively. It 

is assumed that cost of all sizes of coal is 

equal. 

 

Table 6 shows that operating cost is 

minimum for values of input parameters at 

point 'a'. In fact the operating cost shown 

in Table 6 should also include cost of FSC. 

As it is maintained at constant value of 

1.8tph it increases the operating cost for 

each point without changing the order as 

far as minimum operating cost is 

concerned. Further, it is observed that 

values of input parameters at points 'g' and 

'h' shown in Figure 5 are not included in 

Table 6. It is due to the fact that if FC is 

computed for a value below to 8.2 tph the 

amount of coal in kiln reduces 

significantly which will be supplied by 

CSC.  

 

Consequently, the amount of CSC will 

increase. Thus, for value of FC less than 

8.2 tph curve will be drawn above to the 

plot of FC equal to 8.2 tph and hence, it 

cannot reach to points 'g' and 'h'. 

Therefore, curve of FC does not appear 

below to the line of 8.2 tph. Moreover, the 

operating range of FC is from 8.2 tph to 

8.8 tph as shown in Table 1 and thus, FC is 

not considered below to 8.2 tph in 

Figure 5. 

 

Based on operating cost optimum values 

of input parameters are found at point ‘a’ 

as shown in Table 6. Further, it is observed 

that values of FC, IO and MSC are plotted 

in Figure 5 using equations for T4, T7 and 

T8, respectively. The % errors for 

predicting these temperatures are 4.42%, 

1.9% and 7.13% as shown in Table 5. 

Considering these the revised values of 

FC, IO and MSC are found as 8.6, 23.9 

and 8.8 tph, respectively.

 

Table 6. Input Parameters and Operating Cost at Different Data Points Shown in Figure 5. 

Data 

point 

 

Input parameter (tph) 

 
Operating cost (Rs/ton) 

 

FC 

 

MSC CSC IO 

a 8.2 3.3 3.5 23.5 176,710 

b 8.2 2.28 5.05 24.14 183,198.2 

c 8.2 2.46 4.2 23.4 176,826 

d 8.6 3.2 3.35 23.5 178,465 

e 8.8 2.1 5.6 24.26 187,590.8 

f 8.6 3.4 3.75 23.0 178,265 

 

Comparison of Results of ANN and 

GMDH 
The values of optimum input parameters 

found through ANN and GMDH are 

compared with that are used in the existing 

process as shown in Figure 1. The results 

of comparison are summarized in Table 7. 

It shows that % deviation between values 

used in Figure 1 and found through ANN 

is less than 3.5%, whereas that predicted 

using GMDH is within ±4.5%. Thus, 

optimum values of input parameters found 

through ANN can be used in the process. 

This fact is also supported through 

operating cost as it is minimum for the 

values predicted using ANN.
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Table 7. Comparison of Optimum Values of Input Parameters With That Are Used in 

the Process. 

Operating parameter Shown in Optimum input parameters % Deviation while 

 Fig. 1 predicted through ANN comparing with 

  ANN GMDH ANN GMDH 

Iron ore 23.61 tph 23.4 tph 23.9 tph 0.89 1.2 

Feed coal 8.5 tph 8.7 tph 8.6 tph 2.4 1.2 

Slinger coal 9.2 tph 8.9 tph 8.8 tph 3.3 4.3 

Air through position, 79.8 tph 70,734.9 m3/h 81.78 tph 0.72 2.5 

AT1, AT2, AT3, MF1  (i.e. 79.223    

and MF2  tph)    

Operating cost, Rs/ton 188,969 187,512 189,272 0.77 0.16 

      

 

CONCLUSIONS 
The salient features of the study are shown 

below: 

(i) For data of rotary kiln topology, TOP-

3, with 2000 epochs shows best 

average value of R as 0.8147. For this 

topology MAE and NMSE are 8.42 

and 0.333, respectively.  

(ii) The data are analysed using GMDH 

algorithm with MAE value of 8.72. 

Governing equations are developed for 

thirteen output parameters with 

maximum % error as ±10.5%. 

(iii)The tested output parameters meet the 

process requirements. 

(iv) Based on % deviation and operating 

cost values of input parameters found 

through ANN are selected as optimum. 

 

Nomenclature 
ai Vector of weights 

CSC Flow rate of coarse slinger coal, 

tph 

di Desired response for ith exemplar 

dij Desired output for exemplar ‘i’ at 

processing element ‘j’ 

đ Mean desired value for the dataset 

considered 

x=(x1, x2…xm) Input variables vector 

yi Network output for exemplar ‘i’ 

ȳ Mean network output value for the 

data set considered 
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